

Sociedade Portuguesa de Física Olimpíadas de Física - Etapa Nacional

1 de junho de 2019 Duração: 1 h 25 min

Prova Experimental - Escalão B

Medida da Capacidade de um Condensador

Experiências com condensadores

Em 1745, Ewald Georg von Kleist descobriu que conseguia armazenar cargas elétricas ligando, com um fio condutor, um gerador de alta tensão a uma jarra de vidro com água. A mão de Von Kleist e a água atuaram como condutores, e a jarra funcionou como um isolador. Desanimado com o valente choque elétrico que sofreu na altura, Von Kleist desistiu destas experiências, mas o seu colega, o físico Pieter van Musschenbroek da Universidade de Leiden, inventou um condensador semelhante, que foi nomeado de Garrafa de Leiden.

Estes dispositivos, inicialmente utilizados como "armazéns" de carga elétrica, tornaram-se componentes muito utilizados em circuitos elétricos, nomeadamente em circuitos de corrente alternada, onde as suas aplicações são imensas. Qualquer computador ou *tablet* possui umas largas dezenas destes dispositivos!

Neste trabalho irás medir a capacidade de um condensador, através da descarga do mesmo através de uma resistência.

Condensadores

Um condensador simples é composto por duas placas paralelas condutoras separadas por um material isolador. Quando se liga um condensador a uma fonte de tensão é aplicada no condensador uma diferença de potencial igual à da fonte de tensão, e vai acumular-se uma carga +Q na placa ligada ao polo positivo da bateria e uma carga simétrica desta, -Q, na outra placa. O quociente entre a carga, Q, em cada uma das placas e a tensão, $V_{\rm C}$, aos terminais do condensador é designada por capacidade, C, do condensador, cuja unidade SI é o farad (em homenagem ao físico Michael Faraday). Quanto maior a capacidade do condensador, maior a carga que este pode acumular (para a mesma diferença de potencial aos seus terminais):

$$C = \frac{Q}{V_{\rm C}}$$

Um circuito envolvendo um condensador encontra-se representado na figura 1, com uma resistência R em paralelo com o condensador C, ligados a uma fonte de tensão U, através do interruptor S. Não havendo inicialmente carga no condensador, ao fechar-se o interruptor S, o condensador vai carregar rapidamente com uma carga $Q_{\rm o}$, ficando os seus terminais a uma tensão igual à tensão da bateria, $V_{\rm C_0}=U=\frac{Q_0}{C}$.

Quando se remove o condensador carregado do circuito da figura 1, deixando os seus terminais em aberto, este mantém a sua carga acumulada durante um tempo considerável.

Para descarregar o condensador da figura 1, é necessário abrir o interruptor S, o que coloca o condensador em série com R, permitindo a descarga deste através de R. Quanto maior o valor da resistência, R, mais lentamente o condensador irá descarregar. Designa-se por constante temporal do circuito, $\tau=RC$, o produto da resistência pela capacidade do condensador, parâmetro que dá uma indicação do tempo que o condensador demora a carregar ou a descarregar.

No processo de descarga, as cargas negativas fluem para a placa carregada positivamente, originando uma corrente elétrica no circuito. Se representarmos o quociente entre a tensão aos terminais do condensador e a tensão da bateria, $\frac{V_{\rm C}}{V_{\rm C_0}}$, em função do tempo, t, veremos que se obtém uma curva do tipo da figura 2. Esta curva pode ser traduzida matematicamente por uma função exponencial, em que a base é um valor designado por número de Neper (e=2,71...), e o expoente é o simétrico da razão entre o instante t e a constante temporal do circuito, $\tau=RC$:

$$V_{\rm C}(t) = V_{\rm C_0} \, e^{\left(\frac{-t}{\tau}\right)} \qquad (1)$$

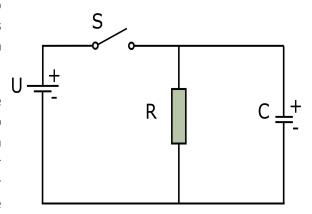


Figura 1: circuito de carga e descarga dum condensador.

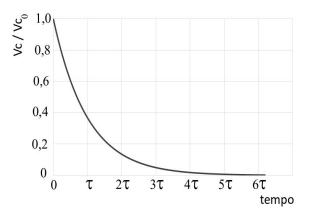


Figura 2: evolução temporal da tensão aos terminais dum condensador durante o processo de descarga.

Na equação anterior, $V_{\rm C}$ é a tensão aos terminais do condensador no instante t e $V_{\rm C_0}$ é a tensão no instante, t=0, em que se inicia a descarga.

Realização Experimental

Neste trabalho vais utilizar a montagem à tua disposição, representada na figura 3, para medir a capacidade de um condensador. A bateria U permite, através do interruptor S (quando fechado), carregar o condensador C, cuja capacidade é desconhecida. Com o interruptor S fechado ligam-se os terminais do condensador C diretamente à bateria U, e este fica carregado com uma tensão $V_{\rm C_0}$ aos seus terminais, igual a U.

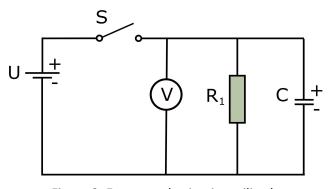


Figura 3: Esquema do circuito utilizado

Abrindo-se o interruptor S, desliga-se o condensador C da bateria U, e estando este ligado à resistência R_1 e ao voltímetro, inicia-se imediatamente o processo de descarga através da resistência total do circuito. O multímetro V (cuja resistência interna é $10\times10^6~\Omega$), ligado em paralelo com a resistência R_1 ($1\times10^6~\Omega$), mede a tensão aos terminais do condensador, permitindo, deste modo, observar a evolução de V_C ao longo do tempo.

Neste trabalho vais medir experimentalmente alguns pontos da curva de descarga do condensador e determinar a capacidade deste.

Material necessário:

- 1. Placa de testes com circuito da figura 3
- 2. Multímetro (com resistência interna 10×10⁶ Ω)
- 3. Cronómetro
- 4. Folha de papel milimétrico
- 5. Régua

Execução Experimental:

- 1. A partir da equação 1, determina os rácios $\frac{V_{\rm C}}{V_{\rm C_0}}$ em falta na primeira coluna da tabela 1 (na folha destacável no final desta prova) para os valores de t indicados.
- 2. Liga o multímetro e seleciona o modo de voltímetro. Se tiveres alguma dúvida neste ponto, pede apoio a um dos vigilantes na sala.
- 3. Regista na tabela 1 o valor da resistência elétrica, $R_{\rm total}$, do circuito de descarga do condensador.
- 4. Fecha o interruptor S de modo a carregar condensador.

Nota: O interruptor S é de pressão: a cada toque alteras o seu estado entre aberto e fechado. Quando S se encontra fechado, o condensador carrega com a tensão da bateria e o multímetro apresenta um valor entre 4 e 5 V (dependendo do estado da bateria). Quando S se encontra aberto, o condensador descarrega pela resistência do circuito e a tensão no multímetro é variável.

- 5. Toma nota do valor máximo registado no multímetro. Este valor corresponderá ao valor da força eletromotriz da bateria U e, portanto, à tensão inicial aos terminais do condensador, V_{C_0} . Regista este valor na tabela 1.
- 6. Tendo em conta o valor de V_{C_0} que mediste, preenche na tabela 1 os valores de V_{C} , para os instantes t indicados.
- 7. Abre S ao mesmo tempo que inicias a contagem do tempo no cronómetro. Regista os instantes em que a tensão aos terminais do condensador atinge os valores de $V_{\rm C}$ que registaste na tabela. Ao abrires S, inicia-se o processo de descarga do condensador e a tensão $V_{\rm C}$ vai variar, inicialmente muito rapidamente, após algum tempo mais lentamente. Podes a qualquer momento voltar a fechar S, carregando novamente o condensador, para repetir medidas.

- 8. Para cada valor de t que mediste, calcula o valor de τ e a partir deste o valor de C. Registaos na tabela 1. Assinala na tabela 1 o valor que escolherias melhor representar a capacidade do condensador.
- 9. Um outro processo de determinar o valor de τ é considerar uma aproximação para a função $V_{\mathbb{C}}(t)$ (equação 1): verifica-se que, para valores de t muito menores do que τ , é válida a substituição desta função por:

$$V_C(t) = V_{C_0} \left(1 - \frac{t}{\tau} \right) \tag{2}$$

- 9.1 Vais agora medir as tensões no condensador durante os primeiros 30 segundos do processo de descarga. Preenche a tabela 2, registando o valor inicial da tensão no condensador e o valor $V_{\rm C}$ para os instantes indicados.
- 9.2 Completa a tabela 2, preenchendo a coluna $\frac{V_{\rm C}}{V_{\rm C_0}}$ e representa graficamente na folha de papel milimétrico os pontos $\frac{V_{\rm C}}{V_{\rm C_0}}$ em função do tempo de descarga.
- 9.3 Traça uma reta que consideres ajustar-se aos pontos e determina a equação dessa reta. Retira da equação da reta o valor de τ .
- 10. Remove agora a resistência R_1 da placa de testes (puxando-a ao mesmo tempo que seguras a placa de testes). O que observas de diferente no processo de descarga do condensador e como justificas esse comportamento?

Nome:			
Escola:			

Tabela 1:

$R_{ m total}$ / Ω					
<i>V</i> _{C₀} / V					
$\frac{V_{\rm C}}{V_{\rm C_0}}$	$\frac{t}{\tau}$	V _C / V	t/s	τ/s	C / μF
0,95	0,05				
	0,22				
	0,36				
0,63	0,46				
	0,69				
	0,92				
0,37	1				

Tabela 2:

V _{C0} / V											
t/s	0	1	2	3	4	5	10	15	20	25	30
V _C / V											
$\frac{V_{\rm C}}{V_{\rm C_0}}$											