

Medição da massa (10 pontos)

Neste problema experimental, tenta-se medir a massa. A massa é também medida utilizando as características de ressonância do oscilador harmónico.

Montagem experimental

Segue-se a lista das peças usadas (Fig. 1). O número de peças é indicado em [] apenas se houver duas ou mais exemplares.

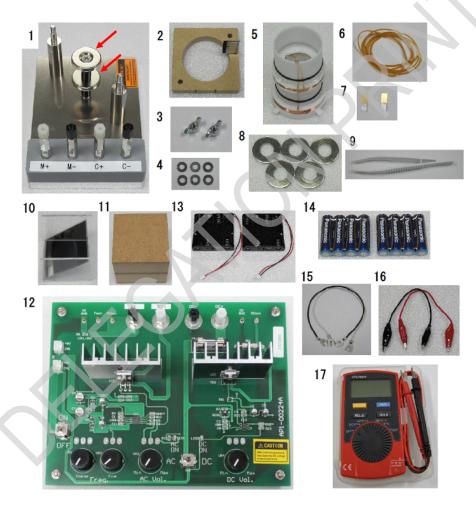


Figura 1: Peças da montagem experimental.

1. Base de montagem:

Nota: Os magnetes na base criam campos magnéticos radiais independentes da altura, garantindo que é uniforme perto do centro do par de imanes dentro de um intervalo de ± 3 mm em altura.

- 2. Suporte (Oscilador)
- 3. Parafusos de aperto manual [2]:

Nota: Remover 2 e 3 de 1 na embalagem recebida para utilização.

4. Anilhas [6]

- 5. Oscilador cilíndrico
- 6. Elásticos [6]
- 7. Marcadores de altura [2]
- 8. Pesos [5]
- 9. Pinças
- 10. Espelho
- 11. Bloco de elevação
- 12. Fonte de alimentação (PS):

Pode-se ativar o modo DC ou AC.

No modo DC, funciona como uma fonte de corrente constante. Rode o botão "DC Vol" para ajustar a corrente. O valor da corrente é obtido a partir da diferença de potencial entre "DCmon" e "DC GND" utilizando o fator de conversão $1.00~{\rm A/V}$.

No modo AC, funciona como fonte de tensão com uma amplitude fixa. Rode o botão "AC Vol" para ajustar a tensão. A corrente AC é obtida a partir da diferença de potencial AC entre "ACmon" e "AC GND" utilizando o fator de conversão $0.106\,\mathrm{A/V}$. A frequência (Freq.) é ajustável utilizando os botões de ajuste "Coarse" e "Fine".

- 13. Suportes de pilhas [2]
- 14. Baterias [8]
- 15. Cabos de encaixe com terminal em forma de U [2]
- 16. Cabos com terminais de crocodilo [2]
- 17. Multímetro digital (DMM):

Rode o botão para selecionar o modo de medição apropriado, "DCV", "ACV" e "Hz". Note que o valor apresentado da tensão AC indica a raiz quadrada do valor médio quadrático (RMS), ou seja, o valor efetivo.

Modelação do sistema

A Figura 2 é um modelo simplificado da montagem experimental. É essencialmente um oscilador baseado numa massa pendurada numa mola.

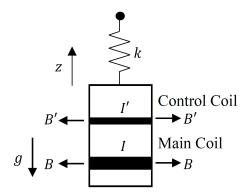


Figura 2: Modelo de oscilador harmónico.

Os parâmetros relevantes são:

- M: massa do oscilador (cilíndrico)
- m: massa de cada peso
- N: o número de pesos
- g: aceleração devida à gravidade
- k: constante da mola efetiva relativa ao movimento vertical
- z: altura (ou deslocação) do oscilador
- $z_{\rm e}$: Altura do oscilador para a qual se estabelece o equilíbrio de forças sem a presença de forças gravíticas e eletromagnéticas.
- B(B'): campo magnético aplicado à bobina principal (à bobina de controlo)
- L(L'): Comprimento do fio condutor da bobina principal (da bobina de controlo)
- I(I'): corrente que passa pela bobina principal (pela bobina de controlo)
- α : Coeficiente positivo da força de resistência do ar

A equação do movimento é dada por

$$(M+Nm)\frac{\mathsf{d}^2z}{\mathsf{d}t^2} = -(M+Nm)g - k(z-z_{\mathsf{e}}) + BLI + B'L'I' - \alpha\frac{\mathsf{d}z}{\mathsf{d}t}. \tag{1}$$

Instalação do oscilador

- 1. Retire o suporte da base de montagem. Enrole os quatro elásticos à volta do suporte num padrão em forma de grelha (ver Fig. 4(a)).
- 2. Introduzir o oscilador cilíndrico do lado da régua na abertura quadrada entre os elásticos cruzados. Colocar os fios condutores do lado oposto à régua. (Fig. 3(b)).
- 3. O oscilador foi concebido para ficar pendurado no suporte com quatro elásticos e oito pequenos ganchos (indicados com um círculo vermelho na Fig. 3(c)). Quando corretamente montado, cada elástico forma um losango truncado com dois ganchos, um acima e o outro abaixo do nível do suporte na vista lateral.

Nota: Nesta experiência, podemos assumir que a força efectiva devida aos elásticos obedece à lei de Hooke.

- 4. Volte a fixar o suporte ao poste com dois parafusos de aperto manual na diagonal. A régua deve ficar na vertical, em cima e não ao lado dos postes de ligação (Fig. 3d)).
- 5. Colocar o oscilador em posição vertical. O seu eixo deve ficar alinhado verticalmente, coincidente com o da base de montagem com os imanes.
- 6. A bobina principal, quando em repouso, deve ficar perto do meio entre os dois imanes, o que pode ser confirmado pela distância entre a superfície superior do íman inferior e a superfície inferior do oscilador ser de 3 a 5 mm (Fig. 3(e) seta vermelha). Se estiver baixa, colocar anilhas entre os postes de ligação e o suporte (Fig. 3(f) setas vermelhas). Se estiver alta, rodar o poste do íman para o remover e adicionar uma anilha por baixo do poste (Fig. 3(f) seta amarela).
- 7. Expor a superfície aderente da fita adesiva de dupla face do marcador (Fig. 4(a)). Colar o marcador na pequena prateleira flutuante do oscilador para medir a altura (Fig. 4(b)).

8. Colocar o espelho no bloco de elevação (Fig. 4(c)). Assegurar uma visão clara do marcador olhando de cima para o espelho (Fig. 4(d) círculo vermelho).

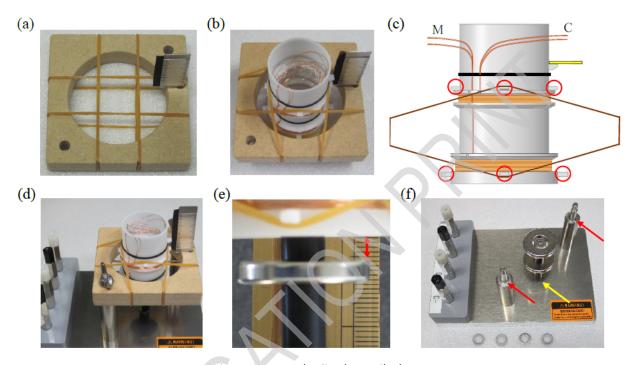


Figura 3: Instalação do oscilador.

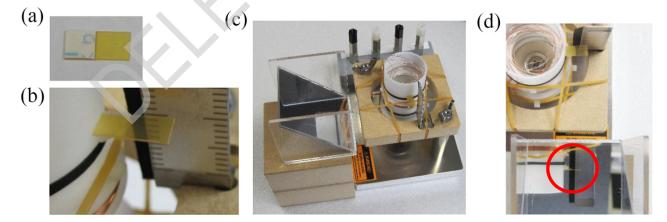


Figura 4: Instalação do marcador e do espelho.

Cablagem

1. Localize e puxe delicadamente de dentro do oscilador (Fig. 3(b)) o par correto de fios que conduzem às bobinas principal (M) e de controlo (C) (Fig. 3(c)). Verifique se o esmalte se soltou das pontas soltas dos fios.

- 2. Desapertar o parafuso dos postes de ligação M+ e M- para permitir folgas. Utilizar os espaçamentos inferiores para os fios de ligação (Fig. 5(a), (b)). A verificação da polaridade será feita em breve.
- 3. Ligue os postes de ligação identificados com C+ e C- da mesma forma. (Qualquer uma das polaridades é aceitável).
- 4. Colocar as pilhas nos suportes de pilhas e fixar as ligações com PS (CN1, CN2) (Fig. 5(c)).
- 5. Ligue os postes de ligação M+ e M- à saída DC (DC+ e DC-) no PS utilizando os fios de encaixe com terminal em forma de U.
- 6. Ponha o comutador na posição "DC" e lique a PS.
- 7. Rode o botão "DC Vol." para ajustar a corrente. Verifique se o oscilador se move para cima 2 mm ou mais. Se se mover para baixo, troque os fios para inverter a polaridade e tente novamente.

Cuidado: Peças quentes. Cuidado com as bobinas e os ímanes. No final de cada passo, reduzir a saída DC para o mínimo.

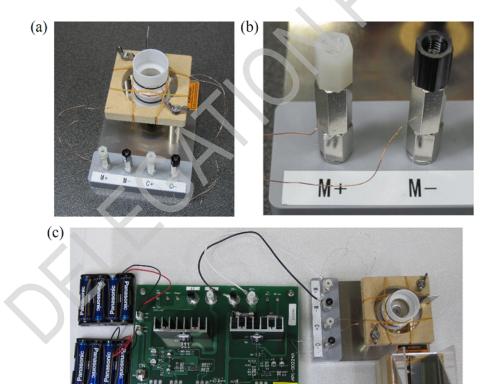


Figura 5: (a), (b) Terminais de ligação com os fios ligados, (c) Toda a instalação ligada, incluindo a PS e as baterias.

Teste do oscilador

- 1. Lique os terminais M+ e M- à saída AC (AC+ e AC-) com os fios com terminal de encaixe.
- 2. Colocar o comutador em "AC" e ligar a PS.

- 3. Rode o botão rotulado de "AC Vol." no sentido dos ponteiros do relógio, começando no mínimo i chegando até um quarto de volta. Ajuste a frequência com o botão de controlo "Coarse" para iniciar a oscilação.
- 4. Ajustar a tensão de saída AC e a frequência para que a oscilação tenha uma amplitude $A=3\,\mathrm{mm}$ (Fig.6). Se a oscilação estiver instável, ajustar as definições do oscilador conforme o que for apropriado.
- 5. Desligar M+ e M- e lique os conetores C+ e C- à saída AC.
- 6. Ligar a PS e iniciar novamente a oscilação.

Figura 6: Comportamento da oscilação visto através do espelho.

Parte A. Lei de Hooke e forças electromagnéticas (2,4 pontos)

A.1 Desenhe nas folhas de resposta as linhas de campo magnético criadas pelos dois imanes idênticos, em forma de disco, com os seus pólos N virados um para o outro.

A.2 Ligar os terminais M+ e M- à saída DC. Acoplar o DMM aos terminais para leitura da corrente DC utilizando os cabos de crocodilo (Fig. 7). Ler a altura do oscilador z com corrente DC nula e sem pesos, ou seja, N=0. Registar na **tabela A.2**. Coloque um peso (N=1) na prateleira circular existente na parede interior do cilindro e registe a nova altura z a que o oscilador fica em repouso. Qual é a corrente contínua I que passa pela bobina principal para fazer o oscilador voltar à posição em que se encontrava sem o peso extra? Repita as medições aumentando N até 5 para preencher a **Tabela A.2**.

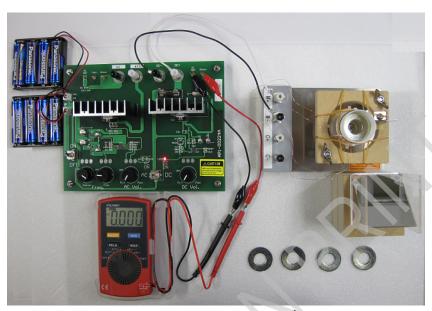


Figura 8: Os cabos de teste do DMM ligados aos terminais. À direita: o oscilador com um peso

- **A.3** Desenhar um gráfico que mostre a relação entre o número de pesos N e a altura 0.7 pt z. A partir do gráfico, obter o declive $a=\frac{\Delta z}{\Delta N}$ e a sua incerteza .
- **A.4** Desenhe um gráfico que mostre a relação entre o número de pesos N e a corrente I. A partir do gráfico, obtenha o valor de b definido como $b=\frac{I}{N}$ e a sua incerteza.

Parte B. Força eletromotriz induzida (3,0 pontos)

B.1 Suponha que uma corrente alternada de frequência f é aplicada à bobina de controlo na ausência da adição de pesos. Dado que a altura do oscilador varia sinusoidalmente com o tempo

$$z - z_0 = A\sin(2\pi ft) \tag{2}$$

em que z_0 é a altura para o equilíbrio de forças e A é a amplitude da oscilação, escreva a expressão para a amplitude V da força eletromotriz induzida na bobina principal.

- **B.2** Ligue os terminais C+ e C- à saída AC. Ligue o DMM a "Fmon" e "AC GND" para medir a frequência. Ajuste a frequência AC e a tensão de saída para produzir uma oscilação constante de amplitude adequada. Meça a frequência $f_{\rm B}$ e registe-a na folha de respostas. Ligar o DMM aos terminais de ligação M+ e M-. Com a frequência fixa, variar a tensão de saída e medir a amplitude da oscilação A e a tensão AC $V'(V' = V/\sqrt{2})$ induzida na bobina principal. Preencher a **Tabela B.2** conforme apropriado.
- **B.3** Faça um gráfico que mostre a relação entre a amplitude A e a tensão V'. A 0.7 pt partir do gráfico, obtenha o valor de c, definido como $c = \frac{V'}{A}$, e a sua incerteza
- **B.4** Calcule BL e a sua incerteza utilizando os resultados de **B.3**. 0.4 pt
- **B.5** Utilizando os resultados de **A.3**, **A.4** e **B.4**, calcular os valores de m e k e quantificar as suas incertezas. Utilizar a aceleração devida à gravidade, $g=9.80 \text{ m/s}^2$ quando necessário.

Parte C. Frequência ressonante dependente da massa (2,3 pontos)

Para as próximas experiências, use a bobina principal para acionar o oscilador. Mude as ligações de acordo com o necessário.

- **C.1** Escreva a expressão para a frequência de ressonância f do oscilador com N 0.2 pt pesos . Utilize a constante de mola k' durante o movimento, que é diferente de k.
- **C.2** Acione o oscilador aplicando a tensão AC à bobina principal. Meça a frequência 0.5 pt de ressonância f, para diferentes números de pesos, N=0 a 5, e anote os valores na **Tabela C.2**.
- **C.3** Usando os resultados de **C.2**, faça um gráfico para obter $\frac{M}{k'}$ e $\frac{m}{k'}$. Escreva os 1.0 pt valores obtidos na folha de respostas. Se precisar de calcular quaisquer quantidades físicas adicionais, escreva-as nos espaços em branco da **Tabela C.2**.
- **C.4** Qual é o valor de $\frac{M}{m}$? 0.6 pt Calcule M e k' utilizando os resultados de **B.5**.

Parte D. Características da ressonância (2,3 pontos)

Quando uma força periódica de amplitude F_{AC} e frequência f actua no oscilador sem um peso, a ampli-

tude de oscilação A é bem descrita pela seguinte fórmula com as características de ressonância:

$$A(f) = \frac{F_{\text{AC}}}{8\pi^2 M f_0} \cdot \frac{1}{\sqrt{(f - f_0)^2 + (\Delta f)^2}}. \tag{3}$$

Aqui $\Delta f=rac{lpha}{4\pi M}$. Esta equação apenas é válida na gama de frequências em que $|f-f_0|\ll f_0$ é relevante. Nesta parte, as características da ressonância são utilizadas para obter a massa do oscilador, M, assumindo que a Eq. (3) é sempre válida.

- **D.1** Acione o oscilador aplicando tensão AC à bobina principal. Ajuste a frequência e a tensão de saída de modo a produzir uma ressonância com amplitude apropriada. Registar a tensão AC $V_{\rm AC}'$ entre "ACmon" e "AC GND" na folha de respostas. Utilizando os resultados de **B.4** e o fator de conversão 0.106 A/V, calcule a amplitude $F_{\rm AC}$ da força eletromagnética periódica que atua no oscilador.
- **D.2** Registe na **Tabela D.2** a amplitude da oscilação à medida que a frequência f é variada. A amplitude constante F_{AC} da força aplicada deve ser mantida durante toda a medição. Faça um gráfico que mostre a relação entre a frequência f e a amplitude A.
- **D.3** Usando os resultados de **D.1** e **D.2**, obtenha M.

Medições de espessura utilizando a birrefringência (10 pontos)

A análise das incertezas não é exigida nesta pergunta.

A birrefringência é uma propriedade ótica de um cristal em que a luz se propaga como dois raios para os quais os índices de refração são diferentes. Quando os eixos ortogonais do cristal x e y se situam no mesmo plano da face de entrada de um cristal birrefringente (Fig. 1), o campo elétrico \boldsymbol{E} da luz linearmente polarizada com incidência normal à face do cristal é decomposta em duas componentes ortogonais \boldsymbol{E}_x e \boldsymbol{E}_y associados aos índices de refração $n_{\rm o}$ e $n_{\rm e}$, respetivamente. Para um cristal com espessura L, as mudanças de fase da luz polarizada em x, Γ_x , e da luz polarizada em y, Γ_y , que ocorrem à medida que atravessam o cristal, são dadas respetivamente por

$$\Gamma_x = \frac{2\pi}{\lambda} n_{\rm o} L, \tag{1}$$

$$\Gamma_y = \frac{2\pi}{\lambda} n_{\rm e} L,\tag{2}$$

onde λ é o comprimento de onda da luz no vazio.

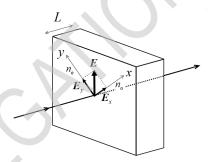


Figura 1: Decomposição vetorial do campo elétrico \boldsymbol{E} de luz linearmente polarizada com incidência normal à superfície de um cristal birrefringente.

A diferença de fase Γ entre os dois raios é

$$\Gamma = \Gamma_y - \Gamma_x = \frac{2\pi}{\lambda} \Delta n L, \tag{3}$$

onde

$$\Delta n = n_{\rm P} - n_{\rm O} \tag{4}$$

é a birrefringência. Uma vez que o campo elétrico da luz é a soma vetorial de E_x e E_y com uma diferença de fase Γ , a luz, depois de atravessar o cristal, tem uma componente de polarização perpendicular à polarização linear inicial da luz incidente.

Considere que I_{\parallel} e I_{\perp} denotam respetivamente as intensidades das componentes da luz após passar através do cristal e que são paralela e perpendicular à direção da polarização linear da luz incidente.

Daqui em diante, a direção da polarização linear da luz incidente (E na Fig. 1) é 45° em relação ao eixo dos x. A intensidade normalizada da componente perpendicular I_{Norm} é dada por

$$I_{
m Norm}=rac{I_{\perp}}{I_{
m Total}}=\sin^2rac{\Gamma}{2},$$
 (5)

onde I_{Total} é a intensidade total de luz transmitida, $I_{\parallel}+I_{\perp}.$

Podemos conceber uma experiência em que I_{Norm} oscila entre 0 e 1 à medida que variamos o comprimento de onda da luz incidente. Sejam $\lambda_m \ (m=1,2,3,\cdots)$ os comprimentos de onda para os quais $I_{\mathsf{Norm}}=0$; então a diferença de fase Γ_m é tal que

$$\Gamma_m = \frac{2\pi}{\lambda_m} \Delta n(\lambda_m) L = 2\pi m. \tag{6}$$

Esta equação permite-nos determinar a espessura do cristal L se pudermos medir múltiplos valores de λ_m para a incógnita $\Delta n(\lambda_m)$.

Nesta experiência, vai determinar a espessura de uma placa de quartzo. O quartzo é birrefringente, com índices de refração $n_{\rm o}$ e $n_{\rm e}$ dependendo do comprimento de onda da luz no vazio como mostra a Fig. 2.

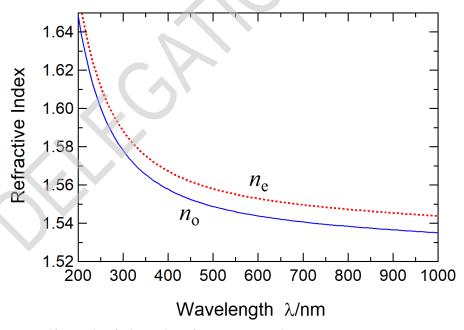
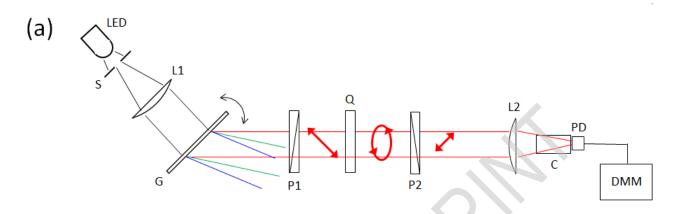



Figura 2: Dependência dos índices de refração $n_{\rm o}$ e $n_{\rm e}$ do quartzo com o comprimento de onda

A figura 3 mostra o sistema de medição de espessuras. As Figs. 4 e 5 mostram as componentes e dispositivos optomecânicos e fotónicos. Um díodo emissor de luz branca (LED), contendo um LED azul e fósforo, é utilizado como fonte de luz. Quando a luz do LED azul é radiada para o fósforo, é emitida luz branca com um espetro contínuo. A luz deste LED branco é dispersa, ou seja, separada espetralmente, utilizando a rede de difração $\bf G$, e polarizada linearmente pelo polarizador $\bf P1$. A sua direção de polarização ($\bf E$ na Fig. 1) está rodada de 45° relativamente ao eixo dos $\bf x$ da placa de quartzo $\bf Q$. A componente de polarização da luz depois de passar por $\bf Q$, ou seja, paralela e perpendicular à direção de polarização de $\bf P1$, é selecionada rodando o polarizador $\bf P2$. O fotodetetor mede a intensidade da luz.

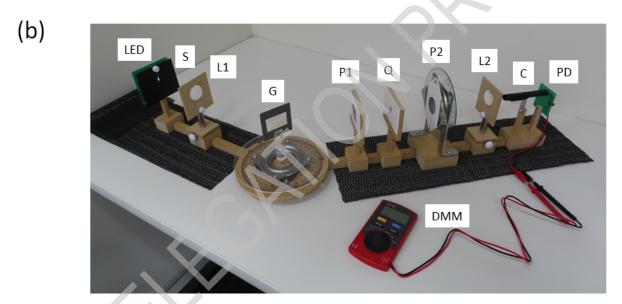


Figura 3: (a) Esquema e (b) fotografia do sistema de medição da espessura. **LED**: LED branco, **S**: fenda, **L1**: lente de colimação, **G**: rede de difração, **P1**: polarizador, **Q**: placa de quartzo, **P2**: polarizador, **L2**: lente de focagem, **C**: cilindro de proteção da luz, **PD**: fotodetetor, **DMM**: multimetro digital.

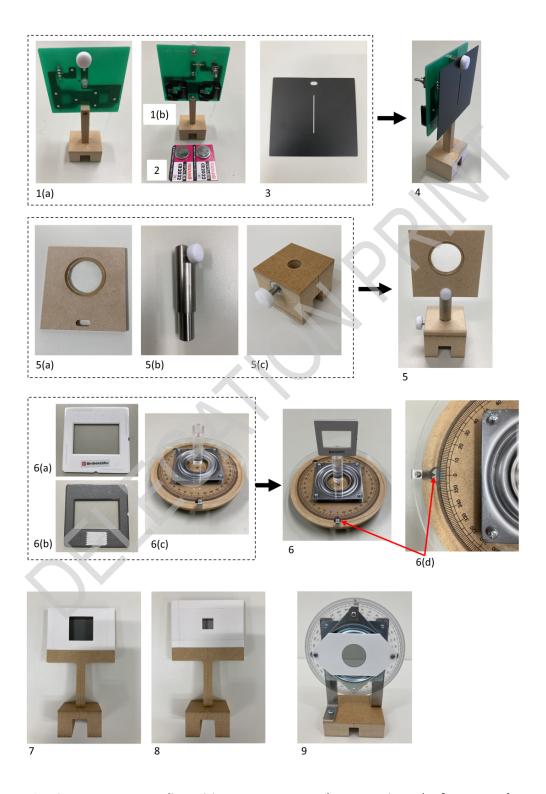


Figura 4: Componentes e dispositivos: **1(a)**. LED branco (vista da frente); **1(b)**. LED branco (vista de trás); **2**. pilhas; **3**. fenda (**S** na Fig. 3); **4**. LED com a fenda acoplada; **5**. lente (**L1**, **L2** na Fig. 3); **5(a)** lente montada; **5(b)** poste de suporte da lente; **5(c)** base do poste; **6**. Rede de difração (**6(a)** vista de frente; **6(b)** vista de trás com fita adesiva) na base rotativa **6(c)** (**G** na Fig. 3); **6(d)** dispositivo de leitura dos ângulos na base rotativa; **7**. polarizador (**P1** na Fig. 3); **8**. placa de quartzo (**Q** na Fig. 3); **9**. polarizador no suporte rotativo (**P2** na Fig. 3).

Figura 5: Componentes e dispositivos (continuação): **10**. cilindro de proteção da luz exterior que possui um íman em parte da superfície exterior (**C** na Fig. 3); **11**. suporte do cilindro; **12**. fotodetetor (**P**D na Fig. 3); **13**. fotodetector com cilindro; **14**. multímetro digital (**DMM** na Fig. 3); **15**. calha curta; **16**. calha longa; **17**. montagem da escala; **18**. cartão branco; **19**. cartão negro; **20**. folhas antiderrapantes; **21** & **22**. caixa de proteção da luz exterior (antes da montagem e após montagem).

Parte A. Configuração do sistema de medição (2,3 pontos)

A luz do LED incide na superfície da rede (Fig. 6). O ângulo de rotação θ de **G** para incidência normal é definido como 0°. As rotações no sentido contrário ao dos ponteiros do relógio e no sentido dos ponteiros do relógio são indicadas por + e -, respetivamente. O ângulo de difração de primeira ordem α é definido como ilustrado. Utilizando a distância entre fendas consecutivas d de **G**, o comprimento de onda λ é dado em função de θ como

$$\lambda = d\sin(\alpha - \theta) + d\sin\theta \tag{7}$$

$$=2d\sin\frac{\alpha}{2}\cos\left(\frac{\alpha}{2}-\theta\right). \tag{8}$$

De seguida, utilizamos $d=1.00~\mu m$ e o ângulo de difração fixo $\alpha=40.0^{\circ}$.

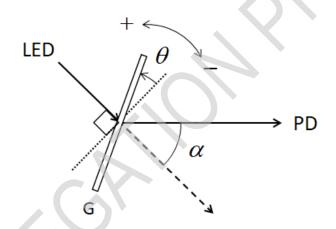


Figura 6: O ângulo de rotação θ da rede de difração G e o ângulo de difração α .

A.1 Calcular o comprimento de onda λ mais longo que pode ser medido e o valor 0.3 pt associado θ .

A.2 Calcular os valores numéricos de θ para $\lambda = 440$ nm. 0.2 pt

Os procedimentos de configuração do sistema de medição são os seguintes.

- [1] Colocar a escala em posição vertical (17 na Fig. 5) utilizando o pedestal (17(b)).
- [2] Colocar duas pilhas no módulo do LED branco. Os lados "+" devem estar virados para si.
- [3] Ligar o LED.
- [4] Retirar o parafuso na parte da frente do módulo LED. Fixar a fenda ao módulo LED com o parafuso (**4** na Fig. 4). Utilizando a montagem com a escala, ajustar a posição da fenda de forma que o fluxo de luz branca transmitida seja o mais brilhante possível, e medir a altura do centro do feixe relativamente à calha à saída da fenda (para o procedimento [9]).
- [5] Deixar a extremidade com ranhura aberta em U da calha longa assentar sobre a da calha curta (Fig. 7(i)). Introduzir o eixo de rotação que sai da face inferior da base rotativa no "orifício virtual de passagem"

formado pelas duas calhas (Fig. 7(ii)). Assegurar a rotação livre e suave de ambos os braços em torno do eixo, de acordo com a Fig. 7(iii). Assegurar-se de que a calha-guia longa se mantém na mesa para os ângulos $0^{\circ} \le \alpha \le 40.0^{\circ}$.

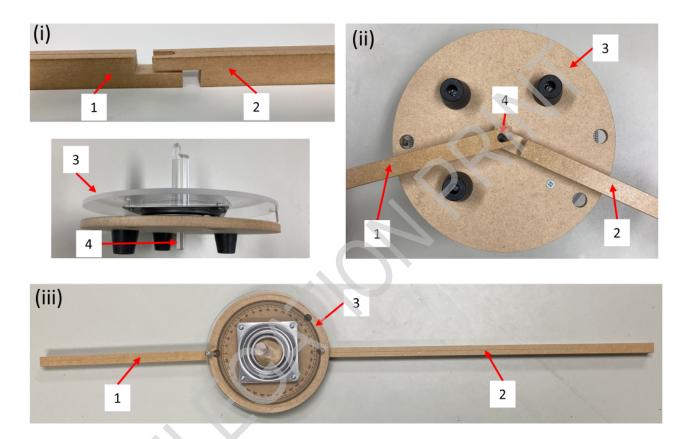


Figura 7: (i) Extremidade da calha curta com ranhura aberta em forma de U sob a calha longa, criando um furo de passagem "virtual". (ii) No furo virtual, inserir o eixo que sai da face inferior da plataforma rotativa. (iii) Vista superior da plataforma rotativa com as calhas livres de rodar em torno do eixo. 1. calha curta; 2. calha longa; 3. base rotativa; 4. eixo da base rotativa.

- [6] Alinhar a linha central da calha curta com 0° na escala da base rotativa e mantê-la nessa posição. Pode colocar uma folha antiderrapante por baixo da calha curta para ajudar a manter a posição.
- [7] Monte as lentes (5 na Fig. 4).
- [8] Colocar o módulo do LED branco com a fenda e a lente (**L1** na Fig. 3) sobre a calha curta. Ajustar a distância entre a fenda e **L1** de modo a que o tamanho do feixe luminoso, depois de passar por **L1**, se mantenha quase constante, ou seja, colimado, ao longo da trajetória da luz.
- [9] Utilizando a montagem da escala, medir a altura do feixe após **L1**. Ajustar o nível de **L1** desapertando o parafuso de fixação da base do poste e movendo o poste o necessário para manter a altura do feixe quase igual à sua altura logo após a fenda.
- [10] Alinhar a linha central da calha longa com a posição de 180° na escala de ângulos na base rotativa.
- [11] Ajustar a posição horizontal do suporte da lente (5(a) na Fig. 4), desapertando o seu parafuso de

0.8 pt

0.3 pt

fixação e movendo-o para a direita ou para a esquerda. O centro do feixe após **L1** deve estar alinhado com a linha central da calha guia longa. Pode colocar o a montagem da escala de cabeça para baixo sobre a calha longa para verificar o alinhamento.

- [12] Expor a superfície adesiva da fita de dupla face colada na parte de trás da rede de difração (**6(b)** na Fig. 4) e fixá-la no topo do eixo da placa rotativa (**6** na Fig. 4).
- [13] Virar a parte da frente da rede para a fonte de luz e rodar a placa de modo a que a luz reflectida pela rede entre na fenda, ou seja, $\theta=0^\circ$ (incidência normal). Registar o ângulo θ_{Stage} da placa rotativa. Será usado em B.1.
- [14] Deslocar a calha longa em torno do eixo de modo a que $\alpha=40.0^\circ$ (Fig. 6). Uma vez fixa, pode colocar uma outra folha antiderrapante por baixo para evitar um desalinhamento acidental.
- [15] Colocar a lente (**L2** na Fig. 3) e o fotodetector (**PD** na Fig. 3) com o suporte cilíndrico na calha longa. Para focar a luz difratada para o **PD**, ajustar a distância entre **PD** e **L2** ao longo da calha longa, e também a altura de **L2**. O diâmetro vertical do feixe é assim minimizado. Verificar o diâmetro do feixe com o cartão branco. No caso de ser demasiado fraco para ser visto a olho nu, utilizar a caixa de proteção contra a luz exterior para cobrir o **PD**.
- [16] Colocar o cilindro de proteção contra a luz no suporte (**13** na Fig. 5). A proteção da luz minimiza a luz exterior indesejada de ser detetada.
- [17] Ligar o **PD** ao **DMM**. O fio vermelho (preto) vai ser ligado ao terminal vermelho (preto). Coloque o multímetro no modo de medida de tensão DC.
- [18] Ajustar a altura de **L2** para maximizar as leituras no DMM. A partir daqui, a intensidade da luz é identificada com os valores medidos de tensão no DMM.
 - A.3 Rodar a base rotativa e determinar o ângulo θ e o comprimento de onda correspondente em que a densidade espetral do LED azul é maximizada, assumindo que $\alpha=40.0^\circ$. Se a sua resposta estiver compreendida entre 450 e 460 nm, o seu aparelho está corretamente alinhado; anote $\alpha=40.0^\circ$ na folha de respostas e continue. Caso contrário, terá de encontrar o verdadeiro valor de α . Sem alterar nada, incluindo o valor original de $\lambda_{\rm Peak}$, encontre um valor corrigido para α que faça $\lambda_{\rm Peak}$ situar-se no intervalo adequado. Registe este valor de α na folha de respostas e utilize-o no resto do problema.
- [19] Colocar os polarizadores (P1 e P2 na Fig. 3) na calha longa.
 - **A.4** Colocar a base rotativa na posição $\theta=-15.0^\circ$. Observar as leituras no DMM e determinar o ângulo φ_\perp do suporte de rotação do polarizador **P2** de forma que a sua direção de polarização é perpendicular à da luz transmitida através do polarizador **P1**. A partir deste resultado, determinar o ângulo φ_\parallel do suporte de rotação do polarizador **P2** quando a sua direção de polarização é paralela à do polarizador **P1**.

- A.5 Bloquear a luz que atravessa a fenda, colocando o cartão preto em frente dela. Deste modo, é possível avaliar a luz de fundo do sistema, ou seja, a luz ambiente para correção da intensidade zero. Definimos as intensidades de luz I_{Offset} e I_{Offset} quando os ângulos do suporte de rotação do polarizador **P2** são φ_{\perp} e φ_{\parallel} , respetivamente. Meça o valor das correções I_{Offset} e I_{Offset} . Note que I_{Offset} e I_{Offset} são devidos à luz ambiente e não à fonte de luz. Eles devem ser eliminados por subtração para determinar a verdadeira contribuição da fonte de luz.
- **A.6** I_{\perp} e I_{\parallel} referem-se às intensidades da luz proveniente da fonte luminosa quando os ângulos de rotação do polarizador **P2** são φ_{\perp} e φ_{\parallel} , respetivamente. Meça as intensidades luminosas I_{\perp} e I_{\parallel} para $\theta=-15.0$ °.

Parte B. Medição das intensidades da luz transmitida (4,7 pontos)

A partir daqui, utilizar os valores de λ calculados utilizando o valor corrigido de α obtido em **A.3**, conforme necessário.

- B.1 Colocar a placa de quartzo entre os polarizadores P1 e P2 e medir as intensidades da luz transmitida I_{\perp} e I_{\parallel} para vários ângulos. As medições devem cobrir completamente a gama de comprimentos de onda de 440 nm a 660 nm. Registar numa tabela os seguintes parâmetros: $\theta_{\rm Stage}$ (leituras dos ângulos da fase de rotação), θ , λ , I_{\perp} , I_{\parallel} , $I_{\rm Total} = I_{\perp} + I_{\parallel}$, $I_{\rm Norm} = I_{\perp}/I_{\rm Total}$. Note que quando o valor de $\theta_{\rm Stage}$ aumenta, o valor de θ diminui do mesmo valor, e vice-versa. Não é necessário utilizar todas as linhas da tabela fornecida, mas deve recolher dados suficientes para obter resultados precisos.
- **B.2** Faça o gráfico do espetro do LED branco, ou seja, de I_{Total} em função do comprimento de onda.
- **B.3** Determine a largura total a meia altura $\Delta \lambda_{\text{FWHM}}$ do espetro do LED azul incorporado no LED branco. É a largura de um pico medida entre os pontos que se encontram a metade da amplitude máxima.
- **B.4** Faça o gráfico do espetro de I_{Norm} . 1.5 pt

Parte C. Análise dos resultados (3,0 pontos)

C.1 A partir do gráfico de I_{Norm} , determine todos os comprimentos de onda em que as intensidades passam por mínimos locais. O número de ordem associado m, de acordo com a Eq. (6), deve ser dado abaixo do comprimento de onda correspondente. Para determinar a birrefringência Δn , utilize os valores de n_{o} e n_{e} dados na Tabela 1.

Q2-10
Portugues (Portugal)

C.2 Obter a espessura da amostra L.

1.5 pt

Tabela 1: Índices de refração $n_{\rm o}$ e $n_{\rm e}$ do quartzo (400-700 nm).

λ/nm	n_{o}	n_{e}	λ/nm	n_{o}	n_{e}	λ/nm	n_{o}	n_{e}
400	1.55769	1.56725	434	1.55394	1.56337	467	1.55107	1.56041
401	1.55756	1.56712	435	1.55384	1.56327	468	1.55099	1.56033
402	1.55744	1.56700	436	1.55374	1.56318	469	1.55091	1.56025
403	1.55732	1.56687	437	1.55365	1.56308	470	1.55084	1.56017
404	1.55720	1.56674	438	1.55355	1.56298	471	1.55076	1.56009
405	1.55707	1.56662	439	1.55346	1.56288	472	1.55068	1.56001
406	1.55695	1.56649	440	1.55337	1.56278	473	1.55061	1.55993
407	1.55684	1.56637	441	1.55327	1.56269	474	1.55054	1.55986
408	1.55672	1.56625	442	1.55318	1.56259	475	1.55046	1.55978
409	1.55660	1.56613	443	1.55309	1.56250	476	1.55039	1.55970
410	1.55648	1.56601	444	1.55300	1.56240	477	1.55031	1.55963
411	1.55637	1.56589	445	1.55291	1.56231	478	1.55024	1.55955
412	1.55625	1.56577	446	1.55282	1.56222	479	1.55017	1.55948
413	1.55614	1.56565	447	1.55273	1.56213	480	1.55010	1.55940
414	1.55603	1.56554	448	1.55264	1.56203	481	1.55003	1.55933
415	1.55592	1.56542	449	1.55255	1.56194	482	1.54995	1.55926
416	1.55580	1.56531	450	1.55247	1.56185	483	1.54988	1.55918
417	1.55569	1.56519	451	1.55238	1.56176	484	1.54981	1.55911
418	1.55558	1.56508	452	1.55229	1.56167	485	1.54974	1.55904
419	1.55548	1.56497	453	1.55221	1.56159	486	1.54967	1.55897
420	1.55537	1.56485	454	1.55212	1.56150	487	1.54961	1.55890
421	1.55526	1.56474	455	1.55204	1.56141	488	1.54954	1.55883
422	1.55515	1.56463	456	1.55195	1.56132	489	1.54947	1.55875
423	1.55505	1.56452	457	1.55187	1.56124	490	1.54940	1.55868
424	1.55494	1.56442	458	1.55179	1.56115	491	1.54933	1.55862
425	1.55484	1.56431	459	1.55171	1.56107	492	1.54927	1.55855
426	1.55474	1.56420	460	1.55162	1.56098	493	1.54920	1.55848
427	1.55463	1.56410	461	1.55154	1.56090	494	1.54913	1.55841
428	1.55453	1.56399	462	1.55146	1.56082	495	1.54907	1.55834
429	1.55443	1.56389	463	1.55138	1.56073	496	1.54900	1.55827
430	1.55433	1.56378	464	1.55130	1.56065	497	1.54894	1.55821
431	1.55423	1.56368	465	1.55122	1.56057	498	1.54887	1.55814
432	1.55413	1.56358	466	1.55115	1.56049	499	1.54881	1.55807
433	1.55403	1.56348						

Q2-12 Portugues (Portugal)

λ/nm	n_{o}	n_{e}	λ/nm	n_{o}	n_{e}	λ/nm	n_{o}	n_{e}
500	1.54875	1.55801	534	1.54678	1.55597	567	1.54518	1.55432
501	1.54868	1.55794	535	1.54673	1.55592	568	1.54514	1.55427
502	1.54862	1.55788	536	1.54667	1.55587	569	1.54509	1.55423
503	1.54856	1.55781	537	1.54662	1.55581	570	1.54505	1.55418
504	1.54850	1.55775	538	1.54657	1.55576	571	1.54500	1.55414
505	1.54843	1.55768	539	1.54652	1.55570	572	1.54496	1.55409
506	1.54837	1.55762	540	1.54647	1.55565	573	1.54492	1.55405
507	1.54831	1.55756	541	1.54642	1.55560	574	1.54487	1.55400
508	1.54825	1.55749	542	1.54637	1.55555	575	1.54483	1.55396
509	1.54819	1.55743	543	1.54632	1.55549	576	1.54479	1.55391
510	1.54813	1.55737	544	1.54627	1.55544	577	1.54474	1.55387
511	1.54807	1.55731	545	1.54622	1.55539	578	1.54470	1.55383
512	1.54801	1.55725	546	1.54617	1.55534	579	1.54466	1.55378
513	1.54795	1.55718	547	1.54612	1.55529	580	1.54462	1.55374
514	1.54789	1.55712	548	1.54607	1.55524	581	1.54458	1.55370
515	1.54783	1.55706	549	1.54602	1.55519	582	1.54453	1.55365
516	1.54777	1.55700	550	1.54597	1.55514	583	1.54449	1.55361
517	1.54772	1.55694	551	1.54592	1.55509	584	1.54445	1.55357
518	1.54766	1.55688	552	1.54587	1.55504	585	1.54441	1.55352
519	1.54760	1.55682	553	1.54583	1.55499	586	1.54437	1.55348
520	1.54754	1.55676	554	1.54578	1.55494	587	1.54433	1.55344
521	1.54749	1.55671	555	1.54573	1.55489	588	1.54429	1.55340
522	1.54743	1.55665	556	1.54568	1.55484	589	1.54425	1.55336
523	1.54738	1.55659	557	1.54564	1.55479	590	1.54421	1.55331
524	1.54732	1.55653	558	1.54559	1.55474	591	1.54417	1.55327
525	1.54726	1.55648	559	1.54554	1.55470	592	1.54413	1.55323
526	1.54721	1.55642	560	1.54550	1.55465	593	1.54409	1.55319
527	1.54715	1.55636	561	1.54545	1.55460	594	1.54405	1.55315
528	1.54710	1.55631	562	1.54541	1.55455	595	1.54401	1.55311
529	1.54705	1.55625	563	1.54536	1.55451	596	1.54397	1.55307
530	1.54699	1.55619	564	1.54531	1.55446	597	1.54393	1.55303
531	1.54694	1.55614	565	1.54527	1.55441	598	1.54389	1.55299
532	1.54688	1.55608	566	1.54522	1.55437	599	1.54385	1.55295
533	1.54683	1.55603						

Q2-13 Portugues (Portugal)

λ/nm	n_{o}	n_{e}	λ/nm	n_{o}	n_{e}	λ/nm	n_{o}	n_{e}
600	1.54382	1.55291	634	1.54260	1.55165	667	1.54157	1.55059
601	1.54378	1.55287	635	1.54257	1.55162	668	1.54154	1.55056
602	1.54374	1.55283	636	1.54254	1.55159	669	1.54151	1.55053
603	1.54370	1.55279	637	1.54250	1.55155	670	1.54148	1.55050
604	1.54366	1.55275	638	1.54247	1.55152	671	1.54145	1.55047
605	1.54363	1.55271	639	1.54244	1.55148	672	1.54143	1.55044
606	1.54359	1.55267	640	1.54241	1.55145	673	1.54140	1.55041
607	1.54355	1.55264	641	1.54237	1.55142	674	1.54137	1.55038
608	1.54351	1.55260	642	1.54234	1.55138	675	1.54134	1.55035
609	1.54348	1.55256	643	1.54231	1.55135	676	1.54131	1.55032
610	1.54344	1.55252	644	1.54228	1.55132	677	1.54128	1.55029
611	1.54340	1.55248	645	1.54224	1.55128	678	1.54125	1.55026
612	1.54337	1.55245	646	1.54221	1.55125	679	1.54123	1.55023
613	1.54333	1.55241	647	1.54218	1.55122	680	1.54120	1.55020
614	1.54330	1.55237	648	1.54215	1.55119	681	1.54117	1.55017
615	1.54326	1.55233	649	1.54212	1.55115	682	1.54114	1.55014
616	1.54322	1.55230	650	1.54209	1.55112	683	1.54111	1.55011
617	1.54319	1.55226	651	1.54206	1.55109	684	1.54109	1.55009
618	1.54315	1.55222	652	1.54202	1.55106	685	1.54106	1.55006
619	1.54312	1.55219	653	1.54199	1.55102	686	1.54103	1.55003
620	1.54308	1.55215	654	1.54196	1.55099	687	1.54100	1.55000
621	1.54305	1.55211	655	1.54193	1.55096	688	1.54098	1.54997
622	1.54301	1.55208	656	1.54190	1.55093	689	1.54095	1.54994
623	1.54298	1.55204	657	1.54187	1.55090	690	1.54092	1.54992
624	1.54294	1.55201	658	1.54184	1.55087	691	1.54090	1.54989
625	1.54291	1.55197	659	1.54181	1.55083	692	1.54087	1.54986
626	1.54287	1.55193	660	1.54178	1.55080	693	1.54084	1.54983
627	1.54284	1.55190	661	1.54175	1.55077	694	1.54081	1.54980
628	1.54280	1.55186	662	1.54172	1.55074	695	1.54079	1.54978
629	1.54277	1.55183	663	1.54169	1.55071	696	1.54076	1.54975
630	1.54274	1.55179	664	1.54166	1.55068	697	1.54073	1.54972
631	1.54270	1.55176	665	1.54163	1.55065	698	1.54071	1.54969
632	1.54267	1.55172	666	1.54160	1.55062	699	1.54068	1.54967
633	1.54264	1.55169				700	1.54066	1.54964