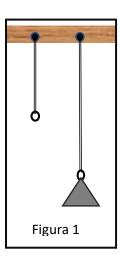


Sociedade Portuguesa de Física

Olimpíadas de Física – Etapa Nacional

24 de outubro de 2020 Duração: 1 h 25 min


Prova Experimental - Escalão B

Energia potencial elástica

Introdução

Nesta experiência irá explorar uma forma de energia que está associada à deformação elástica dos materiais.

Quando estica um elástico, facilmente verifica que essa não é a situação de equilíbrio, já que o elástico tende a voltar ao comprimento inicial. Assim, o estado de energia de um elástico esticado não é o estado mais baixo de energia e deformar um elástico exige a realização de trabalho. Esse trabalho é tanto maior quanto maior for a deformação, o que significa que o sistema ganha uma energia adicional que depende da elongação. A energia associada à deformação do elástico designa-se por energia potencial elástica. Um elástico deformado permite, quando libertado, transferir energia para um objeto em contacto com ele. O exemplo típico deste comportamento é o funcionamento de uma fisga que imprime energia cinética a um projétil.

Com a experiência proposta pretende-se que deduza a relação entre a energia potencial elástica, a constante elástica do material e a elongação provocada.

Na figura 1, representa-se um elástico suspenso, primeiro livre e depois sujeito a uma força F por ação de um peso suspenso. A deformação $\Delta \ell$ provocada por uma força aplicada de intensidade F é determinada pela seguinte relação:

$$F = K \Delta \ell$$

sendo K a constante elástica do material. Assim, a força que mantém um material elástico esticado é proporcional à sua deformação (elongação).

Realização experimental

Comece por escrever a sua identificação nas páginas 4,5 e 6 que servirão para alguns registos.

Material: calha em V inclinada, berlinde (massa = $5.8 \text{ g} \pm 0.2 \text{ g}$), várias anilhas de massa (10.2 ± 0.2) g, clip para suspender massas, uma régua e elásticos. Considere g = 10 m s^{-2}

Procedimento

- 1) A primeira parte deste trabalho é a determinação da constante elástica, K, dos elásticos que lhe são fornecidos.
 - a) Usando o prego preso no suporte vertical e o elástico com o clip suspenso como se mostra na figura 2, varie o número de anilhas suspensas no clip e verifique que o comprimento do elástico, c, varia.
 - b) Determine vários pares de valores (massa suspensa, posição do extremo do elástico). Nota: Depois de acrescentar ou retirar anilhas espere uns segundos para o sistema ficar imóvel e não deixe o clip entrar em contacto com a madeira.
 - Preencha a tabela I com os valores experimentais, sem se esquecer de identificar nas colunas as grandezas e as unidades.
 - c) Represente $F(\Delta c)$ no gráfico 1
 - d) A partir do gráfico determine a constante elástica, *K*. Explique o processo que utilizou para essa determinação.

Figura 2

- 2) Considere agora a calha inclinada fornecida. Usando medidas experimentais e as relações trigonométricas para um triângulo retângulo determine o seno do ângulo que a calha faz com a horizontal.
- 3) Indique como pode determinar a variação de altura entre dois pontos da calha, conhecendo o comprimento medido sobre ela?
- 4) Para estudar as variações de energia elástica, irá usar o lançamento de um berlinde na calha inclinada (ver figura 3).

Figura 3: Ilustração do lançamento

O sistema de lançamento utiliza um lançador em espuma, para poder desprezar a sua massa, alinhado na direção de lançamento e ligado a um elástico fixo em dois pontos da calha. O elástico é semelhante ao que usou para determinar a constante elástica. O berlinde é encostado ao lançador, e puxando este ao longo da calha, para baixo, o berlinde afasta-se da posição inicial, deformando o elástico. Este afastamento ao longo da calha será designado por y.

Execute lançamentos do berlinde (refira-se à figura 3), puxando o lançador para baixo e largando-o com velocidade nula (Sugestão: para garantir que a velocidade é nula, prima o lançador contra a calha na posição pretendida e liberte-o rapidamente). Use variações do afastamento inicial da esfera entre 1,0 cm e 3,0 cm, com intervalos de 0,5 cm. Para cada lançamento meça na escala marcada sobre a calha a posição

inicial do berlinde, P_0 , antes de libertar o lançador, e a posição final atingida, P. Execute pelo menos 8 lançamentos para cada deformação inicial e registe P_0 e P0 na tabela II, onde a posição 1 corresponde à situação em que não deforma o elástico. Obtenha os melhores valores de P0 e registe-os na tabela III.

- 5) Qual é o valor da energia cinética quando a energia potencial gravítica do sistema Terra-berlinde é máxima?
- 6) Considerando que quando liberta o berlinde a energia cinética é nula, a energia mecânica corresponde apenas a energia potencial elástica e energia potencial gravítica. Considere que há conservação de energia.
 Como relaciona a variação de energia potencial elástica com a variação da

energia potencial gravítica entre as posições Po e P?

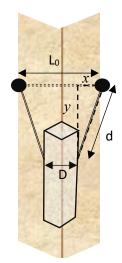
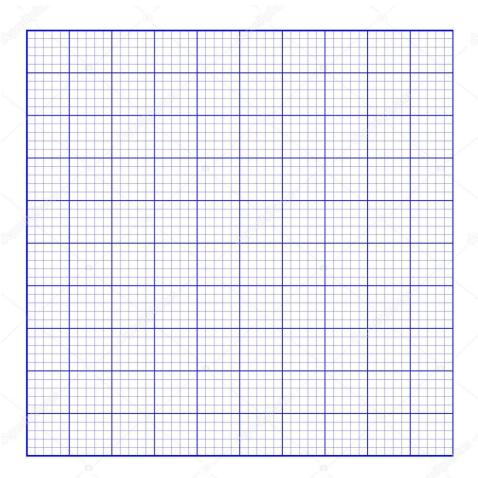


Figura 4: Esquema de deformação do elástico

- 7) Calcule a variação máxima de posição na calha, $\Delta \ell_{max}$, para cada lançamento, definindo a posição inicial pelo ponto onde o berlinde é libertado. Coloque os valores na tabela III. Obtenha as alturas correspondentes e registe-as na mesma tabela.
- 8) Calcule a variação de energia potencial gravítica do sistema Terra-berlinde associada a cada lançamento e preencha a coluna respetiva na tabela III.
- 9) Calcule a energia potencial elástica (existente antes de libertar o elástico) e preencha a coluna respetiva na tabela III.
- 10) Tome em consideração a figura 4 para calcular a elongação do elástico em cada situação:

Elongação =
$$2d + D - L_0 = 2\sqrt{x^2 + y^2} - 2x$$

Meça as grandezas necessárias e preencha as colunas associadas na tabela III.


- 11) Represente graficamente no gráfico 2 a energia potencial elástica inicial em função da elongação do elástico.
- 12) Represente graficamente no gráfico 3 a energia potencial elástica inicial em função do quadrado da elongação do elástico.
- 13) Em qual dos gráficos pode considerar que a relação é linear? Nesse caso, ajuste à mão a melhor reta e determine o seu declive.
- 14) Compare o declive que obteve, com a constante elástica, K, obtida em 1 e sugira uma expressão para a energia potencial elástica da mola em função da elongação e da constante elástica, sabendo que a energia é proporcional a K.

Nome:			
Escola:			

Tabela I : Determinação da constante elástica

situação	Nº		
	anilhas		
1			
2			
3			
4			
5			
6			
7			
8			
9			

Gráfico 1

Nome: _		
Escola:	 	

Tabela II

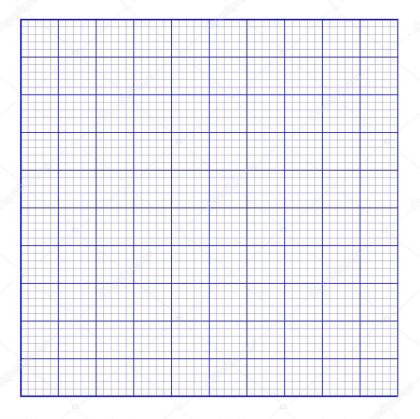

posição	<i>y</i> (cm)	<i>P</i> ₀ (cm)	<i>P</i> (cm)						
1	0								
2	1,0								
3	1,5								
4	2,0								
5	2,5								
6	3,0								

Tabela III

$m_{\text{berlinde}} = 5,70 \text{ g}$		$L_0 = $ $D = $			x =		g =	g = 10 m/s ²	
posição	y (cm)	P ₀ ()	< <i>P</i> >	Δℓ ()	<i>∆h</i> ()	ΔE_p gravítica ()	E elástica ()	Elongação ()	
1	0								
2	1,0								
3	1,5								
4	2,0								
5	2,5								
6	3,0								

Escola:	

Gráfico 2

Gráfico 3

