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Physics of Live Systems (10 points)
Data: Normal atmospheric pressure, 𝑃0 = 1.013 × 105 Pa = 760 mmHg

Part A. The physics of blood flow (4.5 points)
In this part you will analyse two simplified models of blood flow in vessels.

Blood vessels are approximately cylindrical in shape, and it is known that for a steady, non turbulent flow
of an incompressible fluid in a rigid cylinder, the difference in pressure of the fluid at the two ends of the
cylinder is given by

Δ𝑃 = 8ℓ𝜂
𝜋𝑟4 𝑄 , (1)

where ℓ and 𝑟 are the length and radius of the cylinder, 𝜂 is the fluid viscosity and 𝑄 is the volumetric flow
rate, i.e. the fluid volume that passes the cylinder cross section per unit time. This expression is often
able to provide the correct order ofmagnitude for the pressure difference in a vessel, evenwithout taking
into account the pulsatile flow, the vessel's compressibility and irregular shape, and the fact that blood
is not a simple fluid but a mixture of cells and plasma. Moreover, this expression has the same form as
Ohm's law, with the volumetric flow rate being interpreted as a current, the difference in pressure as a
voltage, and the factor 𝑅 = 8ℓ𝜂

𝜋𝑟4 as a resistance.

Consider for example the symmetrical network of arterioles (small arteries) depicted in Figure 1 that
delivers blood to the capillary bed of a tissue. In this network, at each bifurcation a vessel is divided in
two identical vessels. However, the vessels of higher levels are thinner and shorter: consider that the
radii and lengths of vessels in two consecutive levels, 𝑖 and 𝑖 + 1, are related by 𝑟𝑖+1 = 𝑟𝑖/21/3 and by
ℓ𝑖+1 = ℓ𝑖/21/3.

Figure 1. Network of arterioles.
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A.1 Obtain an expression for the volumetric flow rate, 𝑄𝑖, in a vessel at any level 𝑖,
as a function of the total number of levels 𝑁 , of the viscosity 𝜂, of the radius 𝑟0
and length ℓ0 of the first vessel, and of the difference Δ𝑃 = 𝑃0 − 𝑃cap between
the pressure at the arteriole at level 0, 𝑃0, and the pressure at the capillary bed,
𝑃cap.

1.3pt

A.2 Calculate the numerical value of the volumetric flow rate 𝑄0 of the arteriole
at level 0, if its radius is 6.0 × 10−5 m and its length is 2.0 × 10−3 m. Consider
that the pressure at the arteriole inlet is 55 mmHg and the vessel network has
𝑁 = 6 levels linking this arteriole to the capillary bed at the pressure 30 mmHg.
Consider that the blood viscosity is 𝜂 = 3.5 × 10−3 kg m−1 s−1. Express your
result in ml/h.

0.5pt

A blood vessel as an LCR circuit

The approximation of rigid cylindrical vessels falls short for several reasons. It is particularly important
to include the time dependent flow and to take into account the change in vessel diameter that occurs
when the pressure varies during a blood pumping cycle done by the heart. Moreover, it is observed that
in the larger vessels the blood pressure varies significantly during a cycle, while in the smaller vessels
the amplitude of the oscillations in pressure is much smaller, and the flow is almost time independent.

When the pressure increases in a single elastic vessel, there will be an increase in its diameter, thus
permitting to storemore fluid in the vessel, and to deliver it when the pressure drops. For this reason, the
elastic behaviour of the vessel can be simulated by adding a capacitor to our initial description. Moreover,
when taking into account the time dependent blood flow rate, one has to consider the inertia of the fluid,
proportional to its density 𝜌 = 1.05 × 103 kg m−3. This inertia can be described by an inductance in our
model. In Figure 2 we represent the equivalent circuit for a single vessel in this model. The equivalent
capacitance and inductance are given by

𝐶 = 3ℓ𝜋𝑟3

2𝐸ℎ and 𝐿 = 9ℓ𝜌
4𝜋𝑟2 , (2)

respectively, where ℎ is the width of the vessel wall and 𝐸 is the artery Young's modulus, a coefficient
that describes the alteration in size of the vessel tissue when a force is applied. The Young's modulus
has units of pressure and is on the order of 𝐸 = 0.06 MPa for arterioles.

Figure 2. Equivalent electric circuit for a single vessel.



Theory

Q3-3
English (Official)

A.3 Obtain, in the stationary regime, the pressure amplitude at the vessel outlet,
𝑃out, as a function of the pressure amplitude at the inlet, 𝑃in, the equivalent re-
sistance, 𝑅, inductance, 𝐿 and capacitance, 𝐶, for a flowwith angular frequency
𝜔. Establish the condition between 𝜂, 𝜌, 𝐸, ℎ, 𝑟 and ℓ so that, for low frequencies,
the pressure oscillation amplitude at the outlet is smaller than that of 𝑃in.

2.0pt

A.4 For the vessel network in A.2 estimate the maximum arteriole wall thickness
ℎ so that the condition established in A.3 is satisfied (consider that ℎ is level
independent).

0.7pt

Part B. Tumour growth (5.5 points)
Tumour growth is a very complex process where biological mechanisms such as cell proliferation and
natural selection are intertwined with physics. In this problem we will consider a simplified model of
tumour growth that addresses the increase in pressure commonly observed in solid tumors.

Consider a group of normal cells forming a tissue surrounded by an inextensible basement membrane,
which forces the tissue to maintain always the same form: a sphere of radius 𝑅 (Figure 3).

Figure 3. Simplified tumour.

Initially the tissue does not have residual stresses, i.e. the pressure at every point is equal to the atmo-
spheric pressure.

At time 𝑡 = 0, a tumour starts growing at the centre of this sphere and, as it grows, the pressure inside
the tissue increases. Consider that both tissues (normal, N, and tumour, T) are compressible such that
their densities, 𝜌N and 𝜌T, increase linearly with pressure:

𝜌N = 𝜌0 (1 + 𝑝
𝐾N

) , 𝜌T = 𝜌0 (1 + 𝑝
𝐾T

) , (3)

where 𝜌0 is the rest tissue density, 𝑝 is the pressure difference to the atmospheric pressure and 𝐾N , 𝐾T
are the compressibility moduli (bulk moduli) of the normal and tumour tissues, respectively. In general,
tumours are stiffer and so they have a higher bulk modulus.
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B.1 The mass of normal cells is not altered while the tumour is growing. Obtain
the ratio between the tumour volume and the total tissue volume, 𝑣 = 𝑉T/𝑉 ,
as a function of the ratio between the tumour mass (𝑀T) and the normal tissue
mass (𝑀N), 𝜇 = 𝑀T/𝑀N and the ratio of the bulk moduli, 𝜅 = 𝐾N/𝐾T.

1.0pt

Hyperthermia is sometimes used together with chemotherapy and radiotherapy in the treatment of can-
cer. In hyperthermia the cancer cells are selectively heated from the normal human body temperature,
37 oC, to temperatures above 43 oC, inducing their death. Researchers are currently developing carbon
nanotubes covered with special proteins capable of binding to tumour cells. When the tissue is irradi-
atedwith near-infrared radiation, the nanotubes absorb it in amuch greater extent than the surrounding
tissues and therefore can be selectively heated as well as the tumour cells to which they are attached.

Consider that the tumour, the normal cells and the surrounding tissue have a constant thermal conduc-
tivity 𝑘, i.e. in the geometry of this problem, the energy that crosses a spherical surface of radius 𝑟 per
unit time and per unit area is equal to 𝑘 times the derivative of the temperature with respect to 𝑟. The
nanotubes are uniformly distributed in the tumour volume and are able to deliver a power 𝒫 of thermal
energy per unit volume. Assume that the temperature is equal to the normal human body temperature
very far away from the tumour.

B.2 Obtain, for the stationary state, the temperature at the centre of the tumour as
a function of 𝒫, 𝑘, the human body temperature and the tumour radius, 𝑅T.

1.7pt

B.3 Obtain theminimumpower per unit volume,𝒫min, needed to heat up all tumour
cells in a tumour with 5.0 cm radius to a temperature larger than 43.0 oC. Take
the thermal conductivity of the tissue to be equal to 𝑘 = 0.60 W K−1m−1.

0.5pt

Consider that the tumour is irrigated by a vessel network with a branched structure like in question A.1.
As the tumour grows, when its pressure 𝑝 becomes larger than the pressure 𝑃cap at the thinnest vessels,
the radii of these vessels will decrease by a small amount 𝛿𝑟. If this pressure reaches a critical value 𝑝c
(which would correspond to a radius decrease of 𝛿𝑟c), the thinnest vessels would collapse, compromising
seriously the irrigation to the tumour. The pressure and the radius change can be related by the following
phenomenological relation:

𝑝
𝑃cap

− 1 = ( 𝑝c
𝑃cap

− 1) (2 − 𝛿𝑟
𝛿𝑟c

) 𝛿𝑟
𝛿𝑟c

. (4)

Consider that just the smallest vessels (of level𝑁 −1) have their radius alteredwhen the tumour increases
its pressure.

B.4 In the linear regime (i.e. consider that 𝑝 − 𝑃cap is very small), express the rela-
tive drop in the flow rate, 𝛿𝑄𝑁−1

𝑄𝑁−1
, in these thinnest vessels, as a function of the

tumour volume ratio 𝑣 = 𝑉T/𝑉 and 𝐾𝑁 , 𝑁 , 𝑝c, 𝛿𝑟c, 𝑟𝑁−1, 𝑃cap.
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