Theory

LIGO-GW150914 (10 points)

Part A: Newtonian (conservative) orbits (3.0 points)

A. 1 (1.0 pt)
$n=$
$\alpha=$

$$
\begin{aligned}
& \text { A. } 2(1.0 \mathrm{pt}) \\
& A(\mu, \Omega, L)=
\end{aligned}
$$

```
A.3 (1.0 pt)
\beta=
```

Part B: Introducing relativistic dissipation (7.0 points)

$\mathbf{B . 1}(1.0 \mathrm{pt})$		
$k=$		
$a_{1}=$	$a_{2}=$	$a_{3}=$
$b_{1}=$	$b_{2}=$	$b_{3}=$
$c_{12}=$	$c_{13}=$	$c_{23}=$
$c_{21}=$	$c_{22}=$	$c_{23}=$
$c_{31}=$	$c_{32}=$	$c_{33}=$

```
B. 2 (1.0 pt)
\(\xi=\)
```

$$
\begin{aligned}
& \mathbf{B .} 3(1.0 \mathrm{pt}) \\
& M_{\mathrm{c}}=
\end{aligned}
$$

Theory

```
B. 4 (2.0 pt)
\(p=\)
```

B. 5 (1.0 pt)
$M_{\mathrm{c}} \simeq \quad M \simeq$
B. 6 (1.0 pt)
$L \simeq$
$\frac{R_{\odot}}{R_{\text {max }}} \simeq$
$\frac{v_{\text {col }}}{c} \simeq$

