## Experiment

Write down the numbers 0 to 9 in the following table:

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |

Part A: Circuit Dimensioning (2.5 points)
A. 1 (0.2 pt)
$V_{\text {out }}=$
A. 2 ( 0.5 pt$)$

| $\#$ | $R_{\mathrm{T} 1}$ | $R_{\mathrm{T} 2}$ | $R_{\mathrm{T} 3}$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| $\bar{R}$ |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Experiment

A. 3 ( 0.3 pt )

Demonstration:
A. 4 (0.4 pt)
$R_{\square}=$ $\pm$
$\rho_{\text {Carbon film }}=$ $\pm$
A. 5 ( 0.5 pt )

Demonstration:

Measured values:
$R_{1}=$
$R_{2}=$
$\kappa=$

## Experiment

A1-3
English (Official)
A. 6 ( 0.3 pt )

| $R_{1}$ Points | $R_{x}$ | $R_{y}$ | $R_{2}$ Points | $R_{x}$ | $R_{y}$ |
| :---: | :--- | :--- | :---: | :--- | :--- |
| Z |  |  | Z |  |  |
| A |  |  | H |  |  |
| B |  |  | I |  |  |
| C |  |  | J |  |  |
| D |  |  | K |  |  |
| E |  |  | L |  |  |
| F |  |  | M |  |  |
| G |  |  | N |  |  |
| V |  |  |  |  |  |

A. 7 ( 0.3 pt )

| Points | $V_{\text {out }}$ | Points | $V_{\text {out }}$ |
| :---: | :---: | :---: | :---: |
| A |  | H |  |
| B |  | I |  |
| C |  | J |  |
| D |  | K |  |
| E |  | L |  |
| F |  | M |  |
| G |  | N |  |
| V |  | W |  |

## Experiment

Part B: Characteristic Curves of the JFET transistor (4.5 points)
B. 1 ( 0.2 pt)
$I_{\mathrm{DS}}=$
B. 2 ( 0.8 pt )
$I_{\mathrm{DS}}$ current values:

| Gate/Drain | Z | H | I | J | K | L | M | N | W |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Z |  |  |  |  |  |  |  |  |  |
| A |  |  |  |  |  |  |  |  |  |
| B |  |  |  |  |  |  |  |  |  |
| C |  |  |  |  |  |  |  |  |  |
| D |  |  |  |  |  |  |  |  |  |
| E |  |  |  |  |  |  |  |  |  |
| F |  |  |  |  |  |  |  |  |  |
| G |  |  |  |  |  |  |  |  |  |
| V |  |  |  |  |  |  |  |  |  |

B. 3 ( 0.2 pt)
$f=$

## Experiment

## B. 4 (1.2 pt)

Use the empty columns to enter corrections factors you deem necessary.
Gate $\mathrm{A}: V_{\mathrm{GS}}=\quad R_{\mathrm{DS}}=$

| Drain point | $V_{\text {out }}$ | $V_{\text {out }}^{\text {L }}$ | $V_{\text {DS }}$ | $I_{\text {DS }}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Gate $\mathrm{B}: V_{\mathrm{GS}}=$
$R_{\mathrm{DS}}=$

| Drain point | $V_{\text {out }}$ | $V_{\text {out }}^{\mathrm{L}}$ | $V_{\text {DS }}$ | $I_{\mathrm{DS}}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Experiment

## B. 4 (cont.)

Gate C: $V_{\mathrm{GS}}=$
$R_{\mathrm{DS}}=$

| Drain point | $V_{\text {out }}$ | $V_{\text {out }}^{\text {L }}$ | $V_{\text {DS }}$ | $I_{\mathrm{DS}}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Gate $\mathrm{D}: V_{\mathrm{GS}}=$
$R_{\mathrm{DS}}=$

| Drain point | $V_{\text {out }}$ | $V_{\text {out }}^{\text {L }}$ | $V_{\text {DS }}$ | $I_{\text {DS }}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Experiment

A1-7
English (Official)

## B. 4 (cont.)

Gate E: $V_{\mathrm{GS}}=$
$R_{\mathrm{DS}}=$

| Drain point | $V_{\text {out }}$ | $V_{\text {out }}^{\mathrm{L}}$ | $\boldsymbol{V}_{\text {DS }}$ | $I_{\text {DS }}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Gate $\mathrm{F}: V_{\mathrm{GS}}=$
$R_{\mathrm{DS}}=$

| Drain points | $V_{\text {out }}$ | $V_{\text {out }}^{\text {L }}$ | $V_{\text {DS }}$ | $I_{\mathrm{DS}}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Experiment

A1-8
English (Official)

## B. 4 (cont.)

Gate G: $V_{\mathrm{GS}}=\quad R_{\mathrm{DS}}=$

| Drain points | $V_{\text {out }}$ | $V_{\text {out }}^{\mathrm{L}}$ | $\boldsymbol{V}_{\text {DS }}$ | $I_{\text {DS }}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

Gate $\mathrm{V}: V_{\mathrm{GS}}=$
$R_{\mathrm{DS}}=$

| Drain points | $V_{\text {out }}$ | $V_{\text {out }}^{\mathrm{L}}$ | $V_{\text {DS }}$ | $I_{\text {DS }}$ |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

## Experiment

B. 5 ( 0.5 pt )

Output curves:


## Experiment

B. 6 ( 0.5 pt )

| $V_{\mathrm{GS}}$ | $R_{\mathrm{DS}}$ |
| :--- | :--- |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Graph: $R_{\mathrm{DS}}\left(V_{\mathrm{GS}}\right)$


## Experiment

B. 7 ( 0.3 pt )

Transfer curve:

B. 8 ( 0.4 pt )
$I_{\mathrm{DSS}}=$
$V_{\mathrm{P}}=$
B. 9 ( 0.4 pt )

Measured transconductance: $g=$

Calculated transconductance from JFET model: $g=$

## Experiment

## Part C: The Paper Thin Film Transistor ( $\mathbf{2 . 0}$ points)

C. 1 ( 0.8 pt )
$I_{\text {closed }}=$

| $t$ | $I$ | $t$ | $I$ |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

## Experiment

C. 2 (1.2 pt)

Graph: $I_{\mathrm{DS}}(t)$


Auxiliary graph to determine $\tau_{1}$ :


## Experiment

Part D: Inverter circuit (1.0 points)
D. 1 ( 0.5 pt )
$R_{\mathrm{L}}=$


## Experiment

$$
\begin{aligned}
& \text { D. } 2(0.5 \mathrm{pt}) \\
& \text { Graph: } V_{\text {out }}\left(V_{\text {in }}\right)
\end{aligned}
$$



