Solutions to Experimental Problem 2

Viscoelasticity of a polymer thread

(J. M. Gil, J. Pinto da Cunha, R. C. Vilão, H. V. Alberto)

July 22, 2018
Problem 2: Viscoelasticity of a polymer thread (10 points)

Part A. Stress-relaxation measurements (1.9 points)

A.1
Measurement: \(\ell_0 = 42.7 + 2 \times 0.5 = 43.7 \) cm,

\[
\ell_0 = (43.7 \pm 0.2) \text{ cm}.
\]

A.2

\[
P_0 = (81.11 \pm 0.03) \text{ gf}.
\]

A.3
The table contains the readings on the scale \(P \) (Question A.3) and the force on the thread, \(F(t) \), at constant strain (Question D.1). The values of \(\frac{dF}{dt} \) (Question D.6) were computed numerically using equal time intervals. The function \(y(t) \) is given by \(y(t) = F(t) - F_0 - F_1 e^{-t/\tau_1} \) (Question D.10).

<table>
<thead>
<tr>
<th>(t / s)</th>
<th>(P(t) / \text{gf})</th>
<th>(F / \text{gf})</th>
<th>(\frac{dF}{dt} / \text{gf s}^{-1})</th>
<th>(y(t) / \text{gf})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>35.7</td>
<td>45.41</td>
<td>2.82</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>36.2</td>
<td>44.91</td>
<td>2.33</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>36.6</td>
<td>44.51</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>36.8</td>
<td>44.31</td>
<td>1.76</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>37.0</td>
<td>44.11</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>37.1</td>
<td>44.01</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>37.2</td>
<td>43.91</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>37.3</td>
<td>43.81</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>37.4</td>
<td>43.71</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td>(t / \text{s})</td>
<td>(P(t) / \text{gf})</td>
<td>(F / \text{gf})</td>
<td>(\frac{d F}{dt} / \text{gf \ s}^{-1})</td>
<td>(y(t) / \text{gf})</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>73</td>
<td>37.5</td>
<td>43.61</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>37.6</td>
<td>43.51</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>37.7</td>
<td>43.41</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>37.8</td>
<td>43.31</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>37.9</td>
<td>43.21</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>38.0</td>
<td>43.11</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>38.1</td>
<td>43.01</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>38.2</td>
<td>42.91</td>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>193</td>
<td>38.3</td>
<td>42.81</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>38.4</td>
<td>42.71</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>38.5</td>
<td>42.61</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>279</td>
<td>38.6</td>
<td>42.51</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>317</td>
<td>38.7</td>
<td>42.41</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>358</td>
<td>38.8</td>
<td>42.31</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>38.9</td>
<td>42.21</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>471</td>
<td>39.0</td>
<td>42.11</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>525</td>
<td>39.1</td>
<td>42.01</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>591</td>
<td>39.2</td>
<td>41.91</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>39.2</td>
<td>41.91</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>672</td>
<td>39.3</td>
<td>41.81</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>39.4</td>
<td>41.71</td>
<td>0.007</td>
<td></td>
</tr>
<tr>
<td>866</td>
<td>39.5</td>
<td>41.61</td>
<td>−0.01</td>
<td></td>
</tr>
<tr>
<td>900</td>
<td>39.52</td>
<td>41.59</td>
<td>−0.00</td>
<td></td>
</tr>
<tr>
<td>993</td>
<td>39.6</td>
<td>41.51</td>
<td>−0.01</td>
<td></td>
</tr>
<tr>
<td>1124</td>
<td>39.7</td>
<td>41.41</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1200</td>
<td>39.74</td>
<td>41.37</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1272</td>
<td>39.8</td>
<td>41.31</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1419</td>
<td>39.9</td>
<td>41.21</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>39.94</td>
<td>41.17</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1628</td>
<td>40.0</td>
<td>41.11</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1800</td>
<td>40.06</td>
<td>41.05</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>1869</td>
<td>40.1</td>
<td>41.01</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>2037</td>
<td>40.2</td>
<td>40.91</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>2100</td>
<td>40.22</td>
<td>40.89</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>2400</td>
<td>40.29</td>
<td>40.82</td>
<td>−7.00 × 10^{-4}</td>
<td></td>
</tr>
</tbody>
</table>
A.4

Measurement: \(\ell = 50.0 + 2 \times 0.5 = 51.0 \text{ cm} \),

\[
\ell = (51.0 \pm 0.2) \text{ cm}.
\]

Part B. Measurement of the stretched thread diameter (1.5 points)

B.1

Two mirrors are used to maximize the distance \(D \) and consequently the distance between diffraction minima.

B.2

The total distance \(D \) is the sum

\[
D = D_1 + D_2 + D_3 = (26.0 + 36.0 + 102.3) \text{ cm} = 164.3 \text{ cm} = 1.643 \text{ m}.
\]

The estimated uncertainties are

\[
\sigma_{D_1} = \sigma_{D_2} = \sigma_{D_3} \approx 0.5 \text{ cm} \quad \Rightarrow \quad \sigma_D = \sqrt{3 \times \sigma_{D_1}^2} = 0.5 \times \sqrt{3} = 0.87 \text{ cm}.
\]

\[
D = (1.643 \pm 0.009) \text{ m}.
\]
B.3

The distance between minima, \(x\), is quite small. To reduce the error, the total distance \(N\times\), with \(N = 22\), was measured:

\[22\times = 49\text{ mm} \Rightarrow \bar{x} = 2.277\text{ mm}.

The corresponding uncertainty is

\[\sigma_{\bar{x}} = \frac{\sigma_{22\times}}{22} = \frac{0.25\text{ mm}}{22} = 0.011\text{ mm}.

\[\bar{x} = (2.277 \pm 0.011)\text{ mm}.

B.4

Using previous results, we get

\[d = \frac{\lambda}{\sin \theta} \approx \frac{\lambda D}{\bar{x}} = \frac{650 \times 10^{-9}\text{ m} \times 1.643\text{ m}}{2.277 \times 10^{-3}\text{ m}} = 4.795 \times 10^{-4}\text{ m} = 0.480\text{ mm}.

For the uncertainties, we have

\[\frac{\sigma_d}{d} = \frac{\sigma_\lambda}{\lambda} + \frac{\sigma_D}{D} + \frac{\sigma_{\bar{x}}}{\bar{x}} = \frac{10}{650} + \frac{0.0087}{1.643} + \frac{0.011}{2.227} = 0.02517 \Rightarrow \sigma_d = 0.02517 \times 0.480\text{ mm} = 0.012\text{ mm}.

\[d = (0.480 \pm 0.012)\text{ mm}.

Part C. Change to a new thread (0.3 points)

C.1

Measurement: \(\ell_0' = 31.6 + 2 \times 0.5 = 32.6\text{ cm}.

\[\ell_0' = (32.6 \pm 0.2)\text{ cm}.

Part D. Data Analysis (5.7 points)

D.1

The force on the thread was calculated as \(F(t) = (P_0 - P(t)) \), in gram-force units.

D.1 See column \(F(t) \) in the table in A.3.

D.2

Left: \(F(t) \) sampled at unequal time intervals. Right: \(F(t) \) sampled at equal time intervals for \(t > 1000 \) s.

D.3

The dimensionless quantity \(\epsilon \) is given by

\[
\epsilon = \frac{\ell - \ell_0}{\ell_0} = \frac{51.0 - 43.7}{43.7} = 0.167 .
\]

The uncertainty in \(\epsilon \), \(\sigma_\epsilon \), is calculated propagating the uncertainties in the measured length, \(\sigma_\ell \) and \(\sigma_{\ell_0} \):

\[
\frac{\sigma_\epsilon}{\epsilon} = \frac{\sigma_{\ell - \ell_0}}{\ell - \ell_0} + \frac{\sigma_{\ell_0}}{\ell_0} = \sqrt{\frac{\sigma_\ell^2 + \sigma_{\ell_0}^2}{\ell - \ell_0} + \frac{\sigma_{\ell_0}^2}{\ell_0}} = 0.2 \times \frac{\sqrt{2}}{7.3} + \frac{0.2}{43.7} = 0.0433
\]

Therefore, \(\sigma_\epsilon = 0.0433 \times 0.167 = 0.0072 \).

D.3

\[
\epsilon = 0.167 \pm 0.007 .
\]
D.4

One has

\[\frac{\sigma}{\epsilon} = \frac{F}{S}. \]

In this case, \(S = \pi(d/2)^2 = 1.809 \times 10^{-7} \text{ m}^2 \) and \(\epsilon = 0.167 \). We also have 1 gf = \(g \times 10^{-3} \) N with \(g = 9.8 \text{ m s}^{-2} \). Therefore, if \(F \) is in gram-force units we have

\[\frac{\sigma}{\epsilon} = \frac{9.8 \times 10^{-3} \text{ gf}^{-1} \text{ N}}{0.167 \times 1.809 \times 10^{-7} \text{ m}^2} F = (324293 \text{ gf}^{-1} \text{ N m}^{-2}) F, \]

where \(F \) is in gf, and \(\sigma \) is in N m\(^{-2}\). Comparing with \(\frac{\sigma}{\epsilon} = \beta F \) we get

\[\beta = 324293 \text{ gf}^{-1} \text{ N m}^{-2}. \]

Note that, if we write

\[F(t) = F_0 + F_1 e^{-t/\tau_1} + F_2 e^{-t/\tau_2} + F_3 e^{-t/\tau_3} + \ldots \quad (1) \]

and compare with equation

\[\frac{\sigma}{\epsilon} = \beta F(t) = E_0 + E_1 e^{-t/\tau_1} + E_2 e^{-t/\tau_2} + E_3 e^{-t/\tau_3} + \ldots \quad (2) \]

we conclude that \(E_0 = \beta F_0, E_1 = \beta F_1, E_2 = \beta F_2, \) etc.

\[\beta = 3.24 \times 10^5 \text{ gf}^{-1} \text{ N m}^{-2}. \]

D.5

For a purely elastic process, \(\sigma = \epsilon E_0 \) and

\[F = \alpha \sigma = \alpha \epsilon E_0. \]

Thus, a graph of a constant function is expected.
D.6

The data for $\frac{dF}{dt}$ inserted in table introduced in A.3, was computed numerically for equal time intervals. However, the graphical method is also exemplified. In the present graph, tangent lines to $F(t)$ are drawn at four different time instants (1200, 1500, 1800 and 2100 s). The slopes of those lines are a measure of $\frac{dF}{dt}$ at those instants.

D.7

For a single viscoelastic process,

$$F = \frac{1}{\beta} (E_0 + E_1 e^{-t/\tau_1}) = F_0 + F_1 e^{-t/\tau_1}.$$

Therefore,

$$\frac{dF}{dt} = -F_1 \frac{1}{\tau_1} e^{-t/\tau_1}, \quad \text{where} \quad F_1 = \frac{E_1}{\beta}.$$

D.8

The linearisation of the expression of $\frac{dF}{dt}$ is accomplished using logarithms:

$$\ln \left(-\frac{dF}{dt} \right) = \ln \left(\frac{F_1}{\tau_1} \right) - \frac{1}{\tau_1} t.$$
The plot of $\ln(-dF/dt)$ is shown in the graph below for a case where the derivative was obtained numerically (left) and using a graphic method (right).

For the left graph, the best straight line is $\ln(-dF/dt) = m_1 t + b_1$ where $m_1 = (-6.47 \pm 0.62) \times 10^{-4}$ and $b_1 = (-6.52 \pm 0.11)$, using t in seconds and the force in gram-force units. If the derivative is computed numerically for unequal time intervals, the final parameters E_1 and τ_1 are similar.

The best straight line for the right graph yields $m_1 = (-6.00 \pm 0.15) \times 10^{-4}$ and $b_1 = (-6.63 \pm 0.02)$ using t in seconds and the force in gram-force units.

Thus, using the data from the left graph, $\tau_1 = \frac{1}{m_1} = 1546$ s and

$$F_1 = \tau_1 e^{b_1} = 2.28 \text{ gf} \Rightarrow E_1 = \beta F_1 = 7.39 \times 10^5 \text{ N m}^{-2}.$$

For the right graph, the final parameters are $\tau_1 = 1667$ s and $E_1 = 7.13 \times 10^5 \text{ N m}^{-2}$.

D.8

<table>
<thead>
<tr>
<th>τ_1 = 1546 s, E_1 = 7.39 × 105 N m$^{-2}$.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Left: dF/dt computed numerically using equal time intervals. **Right:** using data from the graph in D.6.

D.9

For the 4 points on the left graph in D.8, we can write

$$F(t) = F_0 + F_1 e^{-t/\tau_1} \Rightarrow F_0 = F(t) - F_1 e^{-t/\tau_1}.$$

Thus, averaging F_0 for the 4 points of the left graph in D.8:

$$F_0 = \left(\frac{40.32 + 40.31 + 40.34 + 40.30}{4} \right) = 40.32 \text{ gf}$$

Finally,

$$E_0 = \beta F_0 = 324293 \times 40.32 \text{ N m}^{-2}.$$

D.9

$E_0 = 1.31 \times 10^7 \text{ N m}^{-2}$.
D.10

The function $y(t)$ is given by

$$y(t) = F(t) - F_0 - F_1 e^{-t/\tau_1},$$

and was added in the Table introduced in A.3 using $F_0 = 40.32$ gf, $F_1 = 2.28$ gf and $\tau_1 = 1546$ s.

D.10 See column $y(t)$ in the Table in A.3.

D.11

Since

$$y(t) = F(t) - F_0 - F_1 e^{-t/\tau_1},$$

then

$$y(t) = F_2 e^{-t/\tau_2} + F_3 e^{-t/\tau_3} + \cdots, \quad \tau_2 > \tau_3 > \cdots$$

At long times, when the contributions from the higher components are small enough, we expect a linear behaviour for $\ln y(t)$:

$$\ln y = \ln F_2 - \frac{1}{\tau_2} t.$$

In this case, the $y(t)$ data points become meaningless above 500 s. In the region 200-500 s the graph is linear and that region can be used to extract the parameters of the second component. The equation of the straight line is $\ln y_2 = b_2 + m_2 t$. From the graph below,

$$m_2 = -(5.65 \pm 0.19) \times 10^{-3} \Rightarrow \tau_2 = \frac{1}{m_2} = 177 \text{s} \quad b_2 = 0.33 \pm 0.07 \Rightarrow F_2 = e^{b_2} = 1.39 \Rightarrow E_2 = \beta F_2 = 4.5 \times 10^5 \text{N m}^{-2}.$$

D.11

$$E_2 = 4.5 \times 10^5 \text{N m}^{-2}, \quad \tau_2 = 177 \text{s}.$$

The best straight line in the range 200-500 s yield the parameters τ_2 and E_2 (Question D.11). The slope of the best straight line in the range [10, 30] s give an estimate of τ_3 (Questions D.12 and D.13).
D.12

Below around 30 s there is clear deviation from a linear behaviour indicating the presence of a third component. In our case, the first data point was acquired at $t = 10$ s.

\[t_i = 10 \text{ s} , \quad t_f = 30 \text{ s} \]

D.13

Drawing a line in the graph using the first data points (in the range defined in D.12), as shown in the graph in D.11, τ_3 can be estimated as:

\[m_3 = -0.02 \Rightarrow \tau_3 \approx m_3^{-1} , \]

\[\tau_3 \approx 50 \text{ s} . \]

Part E. Measuring E in constant stress conditions (0.6 points)

E.1

From Question C.1 we have

\[\ell'_0 = (32.60 \pm 0.2) \text{ cm} . \]

The final length ℓ' should be measured. In our case,

\[\ell' = 42.2 + 2 \times 0.5 = 43.2 \text{ cm} \Rightarrow \ell' = (43.2 \pm 0.2) \text{ cm} . \]

Therefore, the strain is

\[\epsilon = \frac{\ell' - \ell'_0}{\ell'_0} = 0.325 . \]

Given that

\[E = \frac{\sigma}{\epsilon} = \frac{Mg}{\pi R^2} = \frac{80.2 \times 10^{-3} \times 9.8}{\pi \times (0.24 \times 10^{-3})^2 \times 0.325} = 1.337 \times 10^7 \text{ N m}^{-2} . \]

Note that the radius R of the stretched thread was not measured. We used the value measured in task B.4: $R \approx 0.24 \times 10^{-3}$ m.
The relative difference is

$$\frac{E - E_0}{E_0} = 0.021.$$

\begin{equation}
E.1 \quad E = 1.337 \times 10^7 \text{ N m}^{-2}, \quad \frac{E - E_0}{E_0} = 2.1\%.
\end{equation}