

SOCIEDADE PORTUGUESA DE FÍSICA

Olimpíadas de Física 2017

Seleção para as provas internacionais

Prova Teórica

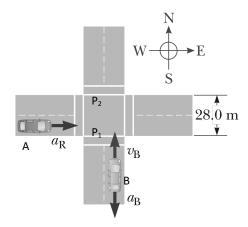
Nome:		
Escola:		

Prova Teórica

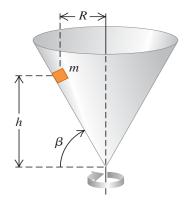
Duração da prova: 4h

I Vários tópicos

1. Os dois carros, A e B, representados na figura aproximam-se de um cruzamento de duas ruas. A largura das faixas de rodagem é 28,0 m. O carro B, com um comprimento de 4,52 m, e que se desloca no sentido Sul-Norte com velocidade \vec{v}_B , trava com uma aceleração constante de módulo 2,10 m/s² (com sentido para Sul). O intervalo de tempo necessário para que a frente do carro percorra os 28,0 m da faixa de rodagem que vai atravessar entre P_1 e P_2 é 3,10 s.

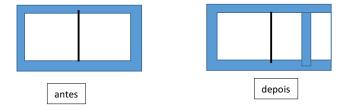


- (a) A que distância da passadeira P₁ se encontra a frente do carro B quando pára?
- (b) Qual é o intervalo de tempo em que há uma parte do carro B entre os limites P₁ e P₂ da faixa de rodagem que este atravessa?
- (c) O carro A está parado na faixa de rodagem atravessada por B. Quando a frente do carro B surge no limite P₁ da passadeira, o carro A começa a movimentar-se, no sentido Leste-Oeste, com uma aceleração de 5,6 m/s². Qual é a distância mínima a que a frente do carro A deve estar do limite da passadeira (Oeste) do cruzamento quando inicia o movimento para que o carro B tenha saído integralmente do cruzamento?
- (d) Se o carro A iniciar o movimento no ponto determinado na alínea anterior, qual será a sua velocidade quando entra no cruzamento?
- 2. O bloco da figura encontra-se apoiado sobre a face interior de um cone que roda em torno de um eixo vertical. O período de rotação do cone é T. As paredes do cone fazem um ângulo β com a horizontal e o coeficiente de atrito estático entre o bloco e a face interior do cone é μ . Para o bloco se manter sempre à mesma altura (h), quais deverão ser os valores máximo e mínimo do período de rotação do cone?



3. Uma fonte sonora de 2000 Hz oscila harmonicamente com uma amplitude de 50 cm. As ondas propagam-se na direção da oscilação. Se se colocar um recetor sobre a linha ao longo da qual as ondas sonoras se propagam, qual deverá ser o período de oscilação da fonte para que as ondas que chegam ao detetor se distribuam num intervalo de 200 Hz de largura? Considere que a velocidade do som no ar é 344 m/s.

- 4. A Sara e o João decidiram construir uma garrafa submersível. Esta tem um volume interior de um litro e está muito bem isolada termicamente (e é estanque); está dividida em duas partes iguais por uma placa metálica fixa (que não deixa passar ar). Contém ar, que pode ser considerado um gás perfeito diatómico, à pressão de uma atmosfera e à temperatura de 300 K. A garrafa é colocada de lado e o topo do lado direito é móvel (e move-se com atrito desprezável). Decidem fazer uma experiência de submersão. Ao afundar lentamente o topo do lado direito da garrafa move-se muito lentamente para a esquerda, de forma a comprimir o ar do lado direito até este ficar com metade do volume inicial e a uma temperatura de 450 K.
 - (a) Calcule o número de moles de ar em cada lado da garrafa.
 - (b) Determine a pressão final nos dois lados da garrafa.
 - (c) Calcule a quantidade de calor transferido entre as duas partes da garrafa.
 - (d) Calcule o trabalho realizado sobre a garrafa neste afundamento.
 - (e) Determine a variação de entropia no lado esquerdo da garrafa durante este processo.



- 5. (a) Um muão é formado nas camadas superiores da atmosfera e viaja à velocidade v = 0.990c durante 4,60 km antes de decair num eletrão, num neutrino e num antineutrino. Quanto tempo medido no seu referencial vive o muão? E no referencial de um observador na Terra? Qual é a distância que a Terra viaja no referencial do muão, enquanto ele existe?
 - (b) Um pião em repouso $(m_{\pi} = 273m_e)$ decai num muão $(m_{\mu} = 207m_e)$ e num antineutrino (massa aproximadamente nula). Qual é a energia cinética do muão? A que velocidade é que ele se desloca? E o antineutrino?
 - (c) Considere que um muão é acelerado a partir do repouso por uma diferença de potencial V até uma velocidade v perto da velocidade da luz. Determine v em função de V e da massa do muão em repouso.

II Eletromagnetismo: vários tópicos

- 1. Considere duas esferas condutoras concêntricas com raios a_1 e $a_2 > a_1$ carregadas com cargas simétricas.
 - (a) Calcule o campo elétrico em todo o espaço produzido por esta distribuição de carga.
 - (b) Qual é a diferença de potencial entre as duas esferas?
 - (c) Se estas duas esferas forem usadas como um condensador, qual seria o valor da sua capacidade?
- 2. Considere uma bobina de comprimento L, de raio $a \ll L$ e com uma densidade de espiras n.
 - (a) Sabendo que o campo magnético produzido por uma espira de raio a ao longo do seu eixo é dado por $B=\frac{\mu_0 a^2 I}{2(a^2+z^2)^{3/2}}$, onde z é a distância entre o centro da espira e o local onde se pretende calcular o campo magnético, calcule o campo magnético produzido pela bobina ao longo do seu eixo.

- (b) Utilize a lei de Ampère para calcular o campo magnético numa bobina infinita. Relacione com o valor obtido na alínea anterior. Utilize a simetria do problema para obter o campo na extremidade da bobina. Relacione também com o valor obtido na alínea anterior. Qual é a direção do campo magnético?
- (c) Considere que pode aproximar o campo na extremidade da bobina por $B = K_0 + K_1 \delta$, onde δ é a distância à extremidade da bobina. Calcule K_0 e K_1 .
- (d) Considere agora uma muito pequena espira quadrada de lado ℓ que oscila com frequência ω e com uma pequena amplitude em torno da extremidade da bobina. Esta pequena espira tem resistência elétrica R, o plano da espira é perpendicular ao eixo da bobina e o seu centro está sempre sobre o eixo da bobina. Calcule a energia dissipada na resistência por cada ciclo da oscilação.
- (e) Considere que em vez de estar ligada a uma resistência, esta bobina teria um condensador de capacidade C. Como varia a carga do condensador ao longo do tempo? Se quando o condensador estivesse com carga máxima fosse ligado a uma resistência de valor R, quanto tempo demoraria a descarregar?
- (f) Considere agora que o plano da espira faz um pequeno ângulo θ com o eixo da bobina. Considere que ela é largada a partir da extremidade da bobina (onde pode ainda considerar o campo magnético como $B = K_0 + K_1 \delta$). Enquanto a espira vai descendo qual é a frequência da oscilação associada ao ângulo θ ?

III Ténis com o Lobo Mau

O Lobo Mau desafiou os porquinhos para uma partida de ténis. Quem perder paga o jantar, cuja ementa seria pré-determinada pelo vencedor. Para dar mais emoção à partida, nenhum dos jogadores pode usar a sua raquete de ténis: todos são forçados a jogar com uma raquete artesanal, construída com um aro circular de raio a=0.13 m e massa $m_a=0.15$ kg e uma barra de espessura desprezável, comprimento $\ell=0.38$ m e massa $m_\ell=0.18$ kg. A rede está obviamente colada ao interior do aro (ver figura) e a sua massa pode-se considerar desprezável.

- 1. Determine o momento de inércia da raquete em relação ao eixo 2 da figura (que passa pelo centro de massa da raquete).
- 2. Determine o momento de inércia da raquete em relação ao eixo 1 da figura. Sugestão: para uma placa qualquer de espessura desprezável, o momento de inércia em relação a um eixo perpendicular à placa é igual à soma dos momentos de inércia em relação aos dois eixos perpendiculares ao primeiro que se encontram no plano da placa.
- 3. Determine o momento de inércia da raquete em relação a um eixo 3, não representado na figura, que é perpendicular ao plano da figura e passa pelo centro de massa da raquete.

Nas situações em que é válido o princípio forte da ação-reação, o momento resultante das forças que atuam num corpo rígido, $\vec{\tau}$, relaciona-se com o momento angular total do corpo, \vec{L} , da seguinte forma:

$$\vec{\tau} = \frac{\mathrm{d}}{\mathrm{d}t}\vec{L} \,.$$

Esta equação é válida num sistema de coordenadas fixo, que não rode com o corpo. Por vezes é mais conveniente considerar sistemas de coordenadas que rodam solidários com o corpo. Nesse caso, a

equação acima pode-se escrever:

$$\vec{\tau} = \frac{\mathrm{d}}{\mathrm{d}t}\vec{L} + \vec{\omega} \times \vec{L} \,,$$

em que ω é o vetor velocidade angular.

4. Mostre que, caso o sistema de eixos solidário com o corpo coincida com os eixos principais de inércia deste (designados por eixo 1, 2, 3), a equação anterior se pode escrever como:

$$\begin{cases}
\tau_1 = I_1 \frac{d}{dt} \omega_1 + (I_3 - I_2) \omega_3 \omega_2 \\
\tau_2 = I_2 \frac{d}{dt} \omega_2 + (I_1 - I_3) \omega_1 \omega_3 \\
\tau_3 = I_3 \frac{d}{dt} \omega_3 + (I_2 - I_1) \omega_2 \omega_1
\end{cases}$$

Para demonstrar a sua habilidade com a raquete, o Lobo Mau atira-a ao ar, na vertical, comunicando-lhe simultaneamente uma rotação em torno de um dos seus eixos principais de inércia, o eixo 1 indicado na figura anterior. Nesse caso

$$\vec{\omega}(t=0) \approx \omega_1(t=0)\hat{e}_1$$

e

$$\omega_2(t=0), \omega_3(t=0) \ll \omega_1(t=0).$$

5. Mostre que a raquete se mantém a rodar essencialmente em torno do mesmo eixo enquanto sobe e desce até ser apanhada pelo Lobo Mau. Sugestão: procure soluções da forma $\omega(t) = A\cos(\lambda t + \delta)$ para ω_2 e ω_3 .

Entusiasmado com o sucesso das suas acrobacias com a raquete, o Lobo Mau atira-a de novo ao ar, na vertical, mas comunica agora uma rotação em torno de um eixo muito próximo do eixo 2. E as coisas correm mal...

6. Mostre que, neste caso, a raquete não se mantém a rodar em torno do mesmo eixo enquanto sobe e desce. Sugestão: procure soluções da forma $\omega(t) = Ae^{\lambda t}$ para ω_1 e ω_3 .

Transformações de Lorentz

As variáveis x', y', z', t', E', p'_x , p'_y e p'_z correspondem às grandezas medidas num referencial que se desloca com velocidade $\vec{v}=v\hat{\imath}$ em relação ao referencial inicial. De acordo com as transformações de coordenadas, em t=0 as origens dos dois referenciais são coincidentes.

$$E' = \frac{E - vp_x}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 $p'_x = \frac{p_x - \frac{vE}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$ $p'_y = p_y$ $p'_z = p_z$

$$t' = \frac{t - \frac{vx}{c^2}}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 $x' = \frac{x - vt}{\sqrt{1 - \frac{v^2}{c^2}}}$ $y' = y$ $z' = z$

Expressões potencialmente úteis

Se
$$x \ll 1$$
, $(1+x)^{\alpha} \simeq 1 + \alpha x$.

$$\sin(a) \pm \sin(b) = 2\sin\left(\frac{a \pm b}{2}\right)\cos\left(\frac{a \mp b}{2}\right)$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right)$$

$$\cos(a) - \cos(b) = 2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right)$$

$$\int \frac{dx}{[(a-x)^2 + b^2]^{3/2}} = \frac{x-a}{b^2 \sqrt{b^2 + (a-x)^2}}$$

$$C_V = \frac{5}{2}nR$$
 para um gás diatómico

Constantes Físicas

e	$1,602176487 \times 10^{-19} \text{ C}$		
N_A	$6,02214179 \times 10^{23} \text{ mol}^{-1}$		
k_B	$1,3806504 \times 10^{-23} \text{ J} \cdot \text{K}^{-1}$		
$arepsilon_0$	$8,854187817 \times 10^{-12} \text{ F} \cdot \text{m}^{-1}$		
c	299792458 m/s		
G	$6,67428 \times 10^{-11} \text{ m}^3 \text{kg}^{-1} \text{s}^{-2}$		
h	$6,62606896 \times 10^{-34} \text{ J} \cdot \text{s}$		
\hbar	$1,054571628 \times 10^{-34} \text{ J} \cdot \text{s}$		
σ	$5,670400 \times 10^{-8} \text{ W} \cdot \text{m}^{-2} \text{K}^{-4}$		
Constante de Wien	$2,8977685 \times 10^{-3} \text{ m} \cdot \text{K}$		
$\kappa_{ m gelo}$	$2.4~{ m WK^{-1}m^{-1}}$		
$L_{ m gelo-cute{agua}}$	$3.3{ imes}10^5~\mathrm{J/kg}$		
R	$8,314 \text{ kg m}^2 \text{s}^{-2} \text{K}^{-1} \text{mol}^{-1}$		
$1 \mathrm{\ atm}$	101325 Pa		
a_0	$0.52917720859 \times 10^{-10} \text{ m}$		
u	$1,660538782 \times 10^{-27} \text{ kg}$		
u	$931,494028 \text{ MeV/c}^2$		
m_e	$9{,}10938215{\times}10^{-31} \text{ kg}$		
m_e	$510,998910 \text{ keV/c}^2$		
m_e	$5,4857990943 \times 10^{-4} \text{ u}$		
m_p	$938,272013 \text{ MeV/c}^2$		
m_n	$939,565346 \text{ MeV/c}^2$		
m_{lpha}	$3727,379109 \text{ MeV/c}^2$		
$M_{ m Lua}$	$7.3477 \times 10^{22} \text{ kg}$		
$R_{ m Lua}$	$1,737 \times 10^{6} \text{ m}$		
$M_{ m Terra}$	$5,97219 \times 10^{24} \text{ kg}$		
M_{\odot}	$1,98855 \times 10^{30} \text{ kg}$		
$M_{\odot} rac{G}{c^2}$	$1,48~\mathrm{km}$		
$1 \mathrm{\ pc}$	3,2616 anos-luz		
1 pc	$3,086 \times 10^{16} \text{ m}$		